Реферат на тему "Нестандартный анализ"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Курсовая на тему Нестандартный анализ

скачать

Найти другие подобные рефераты.

Курсовая *
Размер: 46.02 кб.
Язык: русский
Разместил (а): Черненко Дмитрий
1 2 3 Следующая страница

добавить материал

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
КИРОВОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. Винниченка
КУРСОВАЯ РАБОТА
по курсу «Математика»
на тему : «Нестандартный анализ»
Кировоград
                                                       2003

СОДЕРЖАНИЕ
ВСТУПЛЕНИЕ……………………………………………………………………………3
1. ЛЕЙБНИЦ  И  “ДРЕВНЯЯ  ИСТОРИЯ”  НЕСТАНДАРТНОГО АНАЛИЗА ….…4
2. РОБИНСОН  И  «НОВАЯ  ИСТОРИЯ»  НЕСТАНДАРТНОГО  АНАЛИЗА……...8
3. БЕСКОНЕЧНО  МАЛЫЕ  ВЕЛИЧИНЫ…………………………………………….10
4. ГИПЕРДЕЙСТВИТЕЛЬНАЯ  ПРЯМАЯ……………………………………………16

5. ПРИМЕР НЕАРХИМЕДОВОЙ ЧИСЛОВОЙ СИСТЕМЫ………………….……..18

6. НОВЫЕ ТРЕБОВАНИЯ К ГИПЕРДЕЙСТВИТЕЛЬНЫМ ЧИСЛАМ  И  ОСНОВНАЯ  ГИПОТЕЗА………………………………………………………………21

7.  СЛЕДСТВИЯ ОСНОВНОЙ  ГИПОТЕЗЫ………………………………………….24

8. ПОСТРОЕНИЕ СИСТЕМЫ ГИПЕРДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ………………27
ЛИТЕРАТУРА………………………………………………………………………..….33

ВСТУПЛЕНИЕ
Нестандартный анализ возник в 1960 году, когда Абрахам Робинсон, специалист по теории моделей, понял, каким образом  методы математической
логики позволяют оправдать классиков математического анализа  XVII и XVIII вв., поставив на строгую основу их рассуждения, использующие  “бесконечно большие” и бесконечно малые величины. Таким образом, речь идет не о каких-то новых “нестандартных” методах, не имеющих ничего общего с традиционной математикой, а о развитии новых средств внутри стандартной (теоретико-множественной) математики.
Нестандартный анализ остался бы любопытным курьезом, если бы единственным его приложением было обоснование рассуждений классиков математического анализа. Он оказался полезным и при развитии новых математических теорий. Нестандартный анализ можно сравнить с мостом, переброшенным через реку. Постройка моста не расширяет доступной нам территории, но сокращает путь с одного берега на другой. Подобным образом нестандартный анализ делает доказательства многих теорем короче.
Однако, быть может, главное значение нестандартного анализа состоит в другом. Язык нестандартного анализа оказался удобным средством построения математических моделей физических явлений. Идеи и методы нестандартного анализа могут стать важной частью будущей физической картины мира. Во всяком случае уже сейчас многие специалисты по математической физике активно используют нестандартный анализ в своей работе.
Нестандартный анализ позволяет с новой точки зрения посмотреть на многие рассуждения классиков математического анализа, кажу­щиеся нестрогими, но приводящие к успеху, и путем относительно небольших уточнений сделать их удовлетво­ряющими современным критериям строгости.
1. ЛЕЙБНИЦ  И  “ДРЕВНЯЯ  ИСТОРИЯ”  НЕСТАНДАРТНОГО АНАЛИЗА
Возраст нестандартного анализа колеблется (в зави­симости от точки зрения) от двух с половиной десятков до трех сотен лет. Два с половиной десятка получится, если считать, что нестандартный анализ зародился осенью 1960 г., когда его основатель, Абрахам Робинсон, сделал доклад на одном нз семинаров Принстонского университета о возможности применения методов мате­матической логики к обоснованию математического ана­лиза. Триста лет получится, если считать началом не­стандартного анлиза появление символов бесконечно малых dx,  dy трактате Лейбница “Новый метод”.
Трудно сказать с уверенностью, насколько в действи­тельности Лейбниц был близок к идеям нестандартного анализа. Как пишет сам Робинсон “исто­рия предмета обычно пишется в свете его позднейшего развития. Уже более чем полвека все обзоры истории дифференциального и интегрального исчислений основы­вались на уверенности в том, что понятие бесконечно малых и бесконечно больших, если даже и непротиворе­чиво, бесполезно для развития анализа. В результате в работах этого периода заметно различие между стро­гостью, с которой рассматриваются идеи Лейбница и его последователей, и снисходительностью, проявляемой к провозвестникам идеи предела”. Характерно, например, следующее высказывание Анри Лебега от 3 декабря 1926 г. “Бесконечно малые были когда-то туманными сущностями, встречавшимися в неясных и неточных формулировках. Все разъяснилось впоследствии благо­даря понятию предела”.
Считая, что идеи Лейбница и идеи сторонников поня­тия предельного перехода мерились двойным стандартом при несправедливом склонении весов правосудия в поль­зу предела, Робинсон предлагает во многом пересмотреть общую картину возникновения и развития математиче­ского анализа от Ньютона и Лейбница до Коши и Вейерштрасса. Этот пересмотр приводит к более полному при­знанию заслуг Лейбница, и сам Лейбниц перемещается, таким образом, из разряда гениев третьего класса в раз­ряд гениев второго класса (класси­фикация, предложенная Станиславом Лемом: в этой классификации гении третьего класса получают прижизненное, а гении более высокого класса – лишь посмертное признание).
         Изложим историко-математические взгляды Робинсона. Робинсон резюмирует стандартный взгляд на историю развития математического анализа в следующих словах: “После длительного периода, в течение которого были определены площади, объемы и касательные в различных частных случаях, во второй половине семнадцатого сто­летия Ньютоном и (несколько позже, но независимо) Лейбницем была построена общая теория дифференциро­вания и интегрирования. Касаясь обоснования введенных им понятий, Ньютон обращался то к бесконечно малым, то к пределам, то непосредственно к физической интуи­ции; его непосредственные последователи предпочитали последнее. С другой стороны, Лейбниц и его последова­тели развивали теорию исходя из дифференциалов пер­вого и следующих порядков. Технические удобства обо­значений, использовавших дифференциалы, привели к бы­строму развитию Анализа и его приложений в Европе, где они были приняты. Однако внутренние противоречия этой концепции привели к осознанию того, что необходи­мы какие-то другие основания. Лагранж считал, что ему удалось найти подходящий путь, взяв за основу тейлоровское разложение функции. Но первое строгое обоснование математического анализа было дано лишь Коши. Основой теории Коши было понятие предела, которое, будучи впервые выдвинуто Ньютоном, впоследствии под­держивалось Даламбером. Более формальное изложение методов Коши было дано Вейерштрассом (которого в не­которой степени предвосхитил Больцано). После создания теория пределов использование бесконечно больших и бесконечно малых превратилось в оборот речи, применяе­мый в выражениях типа “... стремится к бесконечности”. Дальнейшее развитие теории неархимедовых полей было целиком предоставлено алгебре.”
Этот стандартный вгляд, но мнению Робинсона, в не­которых отношениях “должен быть дополнен или даже изменен”. В доказательсто этого Робинсон приводит большое количество выдержек из сочинений Лейбница и других упомянутых выше авторов. Как считает Робин­сон, “... отношение Лейбница к бесконечно большим и бесконечно малым величинам в Анализе в основном оставалось неизменным в течение двух последних десяти­летий его жизни. Он полностью одобрял их введение, но считал их “идеальными элементами, подобными мнимым числа. Эти идеальные элементы подчиняются тем же законам, что и обычные числа. Тем не менее они пред­ставляют собой не более чем удобные фикции, необходи­мые для облегчения рассуждений и открытий. Всегда, при желании, можно исключить их использование и вер­нуться к стилю античных математиков, рассуждая в тер­минах величин, достаточно больших (или малых) для того, чтобы ошибка была меньше любой наперед задан­ной. Все это отчетливо и неоднократно утверждается в сочинениях Лейбница”.
Приведем теперь некоторые из высказываний Лейб­ница, цитируемых Робинсоном.
“... Нужно воспринимать бесконечное подобно тому, как это делается в оптике, когда солнечные лучи счита­ются приходящими из бесконечно удаленной точки и по­этому параллельными... И когда имеются различные порядки бесконечного или бесконечно малых, то пони­маются они в том же смысле, в каком земной шар счи­тается точкой по сравнению с расстоянием до неподвиж­ных звезд, а шарик в наших руках — точкой по сравне­нию с радиусом земного шара, так что расстояние до неподвижных звезд является бесконечно  бесконечным или бесконечностью бесконечности по отношению к диаметру шарика. Вместо бесконечно большого или бесконечно малого количества можно взять количество настолько большое или малое, насколько это нужно, чтобы ошибка не превышала заданной. Отличие от архимедовского стиля рассуждений лишь в выражениях, которые у нас более непосредственные и лучше приспособлены для искусства изобретать”.
“...Если кто-то не желает рассматривать бесконечно большие и малые в строго метафизическом смысле, как реально существующие, он можег пользоваться ими как «идеальными понятиями», которые сокращают рассужде­ния, подобно мнимым корням в обычном анализе... Таким же образом представляют более трех измерений...— все это для установления идей, спо­собных сокращать рассуждения и основывающихся на реальностях.
Не следует все же воображать, что наука о бесконеч­ном унижается этим объяснением и сводится к фикциям, ибо постоянно остается, говоря языком схоластики, синкатегорематическая бесконечность. Например, остается верным, что 2 равно 1/1+1/2+1/4+1/8+1/16+1/32 и т. д., что есть бесконечный ряд, в котором содержатся сразу все дроби с числителем 1 и со знаменателями, образующими удваивающуюся геометрическую прогрес­сию, хотя здесь употребляют все время лишь обыкновен­ные числа и хотя не вводят никакой бесконечно малой дроби или дроби с бесконечным знаменателем... Правила конечного сохраняют силу в бесконечном, как если бы существовали атомы..., хотя они вовсе не существуют, ибо материя в действительности делима без конца и, наоборот, правила бесконечного сохраняют силу в конеч­ном, как если бы имелись метафизические бесконечно малые, хотя в них и нет нужды и хотя деление материи никогда не приходит к бесконечно малым частицам. Это объясняется тем, что все управляется разумом и что ина­че совсем не было бы ни науки, ни правила, а это не согласовалось бы с природой верховного начала”. (Это высказывание Лейбница можно при желании рассматривать как формулировку принципа переноса, что дает еще одно основание называть его также “принципом Лейбница”.)
“...Несравнимыми величинами я называю такие, одна из которых никогда не сможет превзойти другую, на ка­кое конечное число ее бы ни помножили, так же как это понимает Евклид...”.
Приведем еще несколько цитат (на этот раз отсутст­вующих в монографии Робинсона).
“...новый Анализ бесконечных рассматривает не линии и не числа, но величины вообще, как это делает обыкновенная Алгебра. Этот Анализ содержит новый алгоритм, т. е. новый способ складывать, вычитать, умно­жать, делить, извлекать корни, соответствующий не­сравнимым величинам, т. е. тем, которые бесконечно велики или бесконечно малы в сравнении с другими...”
Методы Лейбница господствовали в Европе в течение более чем 50 лет. Однако во второй половине XVIII столетия начались поиски альтернативных путей построения анализа. Лагранж предлагал рассматривать разложения функций в степенные ряды, предполагая, что любая или почти любая функция может быть разложена в такой ряд. Даламбер предлагал понятие предела в качестве исходного для построения математического анализа. Он писал:
“Говорят, что одна величина лявляется пределом дру­гой, если вторая может приблизиться к первой ближе, чем на любую заданную величину... Теория пределов яв­ляется основанием подлинной Метафизики дифферен­циального исчисления... В дифференциальном исчислении речь идет не о бесконечно малых величинах, как это обычно утверждают; речь идет лишь о переделах конечных величин... Термином “бесконечно малая» пользуются лишь как сокращением …»
Эти высказывания даламбера выглядят как изложение современной точки зрения на пределе. Можно было бы предположить, что с этого времени понятие бесконечно малых будет полностью устранено. Это, однако, не так. Коши, рассматриваемый обычно как основатель современного подхода к построению ана­лиза, использует понятие бесконечно малой величины. Пытаясь объяснить в современных терминах, что Коши называет “величиной”, можно предположить, что величи­на — это функция с действительными значениями, опре­деленная на упорядоченном множестве без наибольшего элемента. Коши, однако, отнюдь не сводит величины к функциям. Наоборот, он говорит о функции как о соот­ношении, связывающем две величины. В его изложении бесконечно малые и пределы фигурируют как равноправ­ные компоненты обоснования анализа.
2. РОБИНСОН  И  «НОВАЯ  ИСТОРИЯ»  НЕСТАНДАРТНОГО  АНАЛИЗА
В 1961 г. по­явилась статья А. Робинсона «Нестандартный анализ» в Трудах Нидерландской академии наук. В статье намечены как основные положения нестандартного анализа, так и некоторые его приложения (например, к аналитической механике). В этой статье Робинсон, в частности, писал: “Наша главная цель – показать, что эти модели дают естественный подход к старой почтен­ной проблеме построения исчисления, включающего бес­конечно большие и бесконечно малые количества. Как хорошо известно, использование бесконечно малых, на­стойчиво защищаемое Лейбницем и без колебании при­нимаемое Эйлером, было дезавуировано с появлением методов Кошн, поставивших математический анализ на твердую основу”.
Итак, до 1961 г. понятие бесконечно малой поятоянной величины, бесконечно малого числа, интерпретирова­лось как в лучшем случае нестрогое, а в худшем — бес­смысленное. Робинсон впервые обнаружил, что это­му понятию можно придать точный математический смысл.
В течение последующих восьми лет вышли в свет три монографии, излагающие нестандартную теорию: в 1962 г.– книга У. Л. Дж. Люксембурга “Нестандарт­ный анализ. Лекции о робинсоновой теории бесконечно малых и бесконечно больших чисел”, в 1966 г.— книга самого А. Робинсона “Нестандартный анализ”, в 1969 г. — книга М. Маховера и Дж. Хиршфелда “Лек­ции о нестандартном анализе”] (из 77 страниц этих “Лекций” действительной прямой отведено немногим болеее двух: «нестандартный анализ» понимается здесь в самом широком смысле).
Наибольший резонанс вызвала книга Робинсона. В девяти первых главах этой монографии содержалось как построение необходимого логико-математического аппарата, так и многочисленные приложения – к дифференциальному и интегральному исчислению, к общей топологии, к теории функций комплексного переменного, к теории групп Ли, к гидродинамике и теории упругости.
В 1966 г. появилась статья А.Р. Бернстейна и А. Робинсона, в которой впервые методами нестандартного анализа было получено решение проблемы инвариантных пространств для полиномиально компактных операторов. В очерке П.Р. Халмоша “Взгляд в гильбертово пространство” в качестве проблемы фигурирует поставленная К.Т. Смитом задача о существовании инвариантного подпространства для таких операторов Т в гильбертовом пространстве , для которых оператор  компактен. А.Р. Бернстейном  и А. Робинсоном методами нестандартного анализа было доказано, что любой полиномиально   компактный оператор в гильбертовом пространстве имеет нетривиальное инвариантное замкнутое подпространство.
Приложения нестандартного анализа в математике охватывают обширную область от топологии до теории дифференциальных уравнений, теории мер и вероятностей. Что касается внематематических приложений, то среди них мы встречаем даже приложения к математической экономике. Многообещающим выглядит использование нестандартного гильбертова пространства для построения квантовой механики. А в статистической механике становится  возможным рассматривать системы из бесконечного числа частиц. Помимо применений к различным областям математики, исследования в области нестандартного анализа включают в себя и исследование самих нестандартных структур.
В 1976 г. вышли сразу три книги по нестандартному анализу: “Элементарный анализ” и “Основания исчисления бесконечно малых” Г. Дж. Кейслера и “Введение в теорию бесконечно малых” К. Д. Стройана и В. А. Дж. Люксембурга.
Быть может, наибольшую пользу нестандартые методы могут принести в области прикладной математики. В 1981 г. вышла книга Р. Лутца и М. Гозе “Нестандартный анализ: практическое руководство с приложениями”. В этой книге после изложения основных принципов нестандартного анализа рассматриваются вопросы теории возмущений.
В настоящее время нестандартный анализ завоёвывает всё большее признание. Состоялся ряд международных симпозиумов, специально посвященных нестандартному анализу и его приложениям. В течении последнего десятилетия нестандартный анализ (точнее, элементарный математический анализ, но основанный на нестандартном подходе) преподавался в ряде высших учебных заведений США.             
1 2 3 Следующая страница


Нестандартный анализ

Скачать курсовую работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/Нестандартный анализ



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com