Реферат на тему "Критерии оптимальности в эколого математических моделях"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Контрольная работа на тему Критерии оптимальности в эколого математических моделях

скачать

Найти другие подобные рефераты.

Контрольная работа *
Размер: 94.67 кб.
Язык: русский
Разместил (а): doctor
1 2 Следующая страница

добавить материал

1 Критерии оптимальности в эколого-математических моделях
1.1 Использование принципа выживания
 
В качестве критерия оптимальности предлагается использовать принцип выживания, полагая, что в диаде выживание – приспособленность первичным является выживание. Пусть динамику экосистемы, в которую входит рассматриваемый вид, адекватно описывает система уравнений с неизвестными численностями особей всех элементов экосистемы. В качестве параметров уравнений выступают экологические условия, а также структурно-функциональные параметры особей всех элементов экосистемы. Выделяют s-я популяция и некоторый структурный или функциональный параметр  этой популяции. Делают предположение о том, что популяция состоит из двух подпопуляций, различающихся величиной фенотипического параметра. Пусть xs(1), xs(2), , – численности и величины фенотипического параметра двух подпопуляций.
Исследование динамической системы, в которую внесены соответствующие изменения, учитывающие различия фенотипического параметра у особей s-ой популяции, позволяет анализировать асимптотические свойства численностей подпопуляций. Один из возможных вариантов поведения – вытеснение второй подпопуляции первой (фенотипический параметр имеет селективное преимущество по сравнению с параметром в заданных экологических условиях). Математически этот вариант описывается выражениями
                                 .zip" v:shapes="_x0000_i1030">
Оптимальной с точки зрения выживания величиной фенотипического параметра является такая величина, при которой для любого отличного от этого значения параметра выполняются условия
                                
Следует отметить, что эти условия верны при произвольных начальных условиях. С оптимальной величиной, удовлетворяющей критерию, следует сопоставлять среднее значение фенотипического параметра.
Также весьма важно то, что если популяция не обладает оптимальным значением параметра, то это не значит, что она элиминируется из биоценоза. Однородная популяция может стабильно существовать при любом значении структурно-функционального параметра , относящимся к области, соответствующей условию стабильного существования популяции, в частности и при значении, не равном оптимальному . Оптимальное же значение устанавливается в результате конкуренции особей с различными значениями рассматриваемого структурно-фенотипического параметра. Именно вследствие этой конкуренции особи с неоптимальными значениями параметра элиминируются.
Применение общего критерия оптимальности возможно путем численного интегрирования уравнений динамики экосистемы при различных величинах рассматриваемого фенотипического параметра. Также возможно применение частных критериев оптимальности, справедливых в конкретных случаях и следующих из общего критерия. Используя критерий отбора, необходимо учитывать ограничения, вытекающие из физико-химических или биологических закономерностей процесса.

1.2 Использование максимума относительной скорости роста численности популяций
В ряде исследований в качестве критерия оптимальности выступало требование максимума относительной скорости роста численности популяции:
                                        
Этот критерий может быть применен для определения оптимальных величин структурно-функциональных параметров, если относительная скорость роста численности представлена в виде функции этих параметров. Причем, если рассматриваемый параметр не зависит от возраста особи, то задача нахождения оптимального значения сводится к отысканию параметра, соответствующего максимуму относительной скорости роста; если же рассматриваемый параметр зависит от возраста, то искомая оптимальная зависимость может быть определена путем решения соответствующей вариационной задачи.
Общий критерий оптимальности применяли к исследованию популяций лосей в лесном биоценозе. Оптимизируемыми параметрами были начальный вес новорожденных и рождаемость. Кроме того, из общего критерия оптимальности выводили требование максимума относительной скорости роста популяции, а затем на основании этого требования оптимизировали функцию роста, определяющая зависимость веса тела особи от возраста. Сравнение теоретических величин, полученных для лосей, и соответствующих биологических данных свидетельствовали об их хорошем согласии.
В теории оптимальных биологических процессов применимы более простые критерии, например, определяющие оптимальность структурно-функциональных параметров органов и систем, роль которых в организме сводится к выполнению определенных функций. Критерием оптимальности такого органа является условие минимума его потребностей при условии выполнения этим органом заданных функций
                               
где Пор – потребности органа; Пп – потребление пищи в единицу времени, связанное с поддержанием жизненного органа, не несущего функциональную нагрузку; Пf – потребление пищи в единицу времени, связанное с осуществлением органом его функций в организме. Использование данного критерия  требует учитывать условия, определяющие функции, выполняемые органом или системой.
Критерий, определяющий оптимальные функциональные параметры, имеет вид: Пf = min. Здесь необходимо сформулировать дополнительные условия, определяющие функции органа.
Если определяющей является энергетическая деятельность органа, то критерий оптимальности может быть сформулирован в виде
                                      ,
где Wi – мощность, потребляемая i-м органом.
В экспериментальных условиях было представлено применение общего критерия отбора для определения оптимального в эволюционном смысле начального веса новорожденных (на примере данных биологических исследований для популяции лосей); энергетического критерия оптимальности  для определения функционального состояния системы транспорта кислорода при физической нагрузке и при ее отсутствии, а так же для нахождения энергетически оптимальной концентрации эритроцитов в крови, парциального давления в артериальной и венозной крови, определения оптимальных функциональных параметров системы внешнего дыхания и др.

2 Принцип минимального воздействия в эколого-математических моделях
Один из способов применения целевой функции состоит в формулировании общего утверждения относительно поведения системы. Хорошо известные экстремальные принципы относятся к этому случаю. Самый известный из них – принцип Гамильтона, согласно которому, каждая механическая система ведет себя так, чтобы действие (интеграл по времени от функции Лагранжа) было минимальным. В экологии предпринимались попытки использования этого подхода для получения уравнения роста популяции, точнее, рассматривалась обратная задача: записать действие, которое приведет к специальному уравнению роста. Одна из наиболее удачных попыток разрешить эту задачу, предложенная М.Гатто с соавторами, представлена в работе Дж.Вебба.
В качестве функционала действия, который приведет к логистическому уравнению роста популяции численности n, было рассмотрено следующее выражение
                       
Для упрощения вычисления была сделана замена переменных
                       
Согласно вариационному принципу, уравнение эволюции x(t) задается требованием экстремальности действия, т.е. dS = 0. После необходимых вычислений было получено динамическое уравнение
                                 
Чтобы сравнить этот результат с логистическим уравнением                   
                                  
его переписали в переменных
                              
и продифференцировали:
                                    
Полученное совпадение показывает, что любое решение логистического уравнения является решением динамического уравнения, выведенного из функционала действия. Однако, не любое решение уравнения  является решением логистического уравнения. Для выявления взаимосвязи между данными уравнениями было проведено исследование полученного уравнения эволюции. После некоторых преобразований и интегрирования было получено выражение
                          
Уравнение эволюции характеризуется константой R: при R > 0 популяция неограниченно растет, при R < 0 популяция достигает максимального значения, а затем уменьшается до 0. Значение R = 0 приводит к логистическому уравнению, тем самым, показывая, что логистический рост – это особый случай равновесия между неограниченным ростом и затуханием.
В работе также был рассмотрен вопрос об интерпретации введенного таким образом “биологического” действия. Описание в терминах кинетической и потенциальной энергии неприемлемо, поскольку ведет к неизменности общей энергии системы (экологические системы обычно подразумеваются открытыми). По аналогии с физикой, где действие разделено на свободное движение и взаимодействие, предлагалось рассматривать действие  как сумму члена, описывающего популяцию, которая не подвержена помехам в росте, и члена V(x), описывающего внешнее влияние среды на популяцию. Однако, подобная интерпретация хорошо описывает лишь случай V(x) = 0, когда применение вариационного принципа приводит к уравнению экспоненциального роста. Сам М.Гатто и его соавторы описывали действие как цену роста.
По мнению Дж.Вебба, применение вариационного принципа позволяет сместить акцент с поведения системы на факторы, которые его определяют, а также делает возможным разделение внутреннего поведения популяции и эффектов внешней среды.

3 Модели случайных стационарных процессов и принципы, на которых они основываются
Модели случайных стационарных процессов рассматривают систему как совокупность взаимодействующих элементов со случайными свойствами. В модель вводиться функция распределения показателей состояния и глобальная характеристика взаимодействия компонентов (энтропия, энергия или вещественый результат). Область применения рассматриваемых моделей ограничивается описанием неструктурированных гомогенных систем, когда необходимо оценить воздействие многих факторов на результирующий признак
Статистические модели строятся при допущении, что исследуемый процесс случаен и может быть изучен с помощью статистических методов анализа систем. Они включают: эмпирические- и динамические статистические модели, корреляционный и факторный анализ, многомерное шкалирование, анализ временных рядов. Для снижения размерности статистических моделей используется ряд методов, например выделение главных компонент в регрессионных уравнениях и гармонических рядах.
3.1 Эргодичность стационарного случайного процесса
Для некоторых процессов в достаточно длинных реализациях случайного процесса содержатся все его значения. Следователь­но, помимо статистических средних характеристик процесса, определяемых пу­тем усреднения по ансамблю возможных значений процесса, имеется возможность определить временные средние харак­теристики путем усреднения по времени до­статочно длинной реализации процесса.
Случайные процессы, у которых стати­стические и временные средние характери­стики совпадают, называются э р г о д и ч е с к и м и. Далеко не все случайные про­цессы удовлетворяют условию эргодично­сти. Однако многие стационарные процессы этому условию удовлетворяют и для них (несмотря на флюктуации временных сред­них характеристик от одной реализации к другой) с вероятностью, равной единице, временные средние совпадают со статисти­ческими средними:

где  - реализации процесса, сдвинутые на .
Можно показать (теорема Винера – Хинчина), что функция корреляции стационарного случайного процесса является Фурье-преобразованием некоторой функции частоты :
 ()
Физический смысл    следует из условия , при котором   - средняя мощность процесса, а следовательно     - его спектральная плотность мощности (спектр мощности).
Иначе говоря, функция корреляции со­держит полную информацию о распределе­нии энергии процесса по частоте, но не мо­жет дать сведений о частотном распределе­нии амплитуд и фаз спектральных состав­ляющих реализаций процесса.
Многие распространенные случайные процессы приближенно можно описать кор­реляционной функцией вида

и соответствующей ей спектральной плот­ностью
.
Итак, спектр мощности и функция кор­реляции не являются независимыми харак­теристиками случайного процесса. Обе эти характеристики определяют степень вероят­ностной связи между значениями сигнала в различные моменты времени или, как ино­гда говорят, степень последейст­вия процесса. Процесс считается не имею­щим последствия, если вероятность наступ­ления последующих значений процесса не зависит от того, какими были предыдущие значения. В процессах с последействием, на­оборот, предыдущее значение процесса влия­ет на вероятность наступления последу­ющего или ряда последующих значений процесса. Чем сильнее выражено последей­ствие процесса, тем больше максимальный интервал времени , в течение которого данное значение процесса еще влияет на следующие за ним значения.
Функция корреляции характеризует сте­пень влияния одного значения процесса на последующие в зависимости от интервала времени , разделяющего эти значения. Как правило, функция корреляции уменьшается с ростом .
Интервал , на котором функция корреляции имеет еще заметную величину, называется интервалом корреляции. Чем больше интервал корреляции, тем более удаленные значения процесса имеют еще вероятностные взаимосвязи.
Аналогично этому за ширину спектра мощности принимают интервал частот для которого значения   име­ют еще заметную величину.
Можно показать, что интервал корреля­ции и ширина спектра мощности связаны обратной зависимостью:

где - постоянная величина ( база сигнала).
Так как наиболее полным описанием случайной последовательности является функция распределения вероятностей ее значений, то задача тестирования в общем случае сводится к получению эмпирических вероятностных характеристик по доступным выборочным данным и проверке гипотез об их соответствии некоторым стандартным характеристикам, определяющим различные классы случайных последовательностей и отдельные их свойства. Часто в качестве стандартной случайной последовательности (СП)  выступает стандартная случайная последовательность, например, с нормальным распределением  и числовыми характеристиками: - математическое ожидание и - дисперсия случайной последовательности.
Общий алгоритм тестирования случайной последовательности с учетом вводимой стандартной случайной последовательности может включать следующие этапы.
1. Определение эмпирических вероятностных характеристик тестируемой случайной последовательности (математического ожидания, дисперсии, корреляционного момента, вероятностей событий и функции распределения вероятностей). Важно, чтобы качество полученных эмпирических оценок соответствовало выдвигаемым априорно требованиям к допустимому отклонению от истинных значений характеристик (доверительному интервалу и доверительной вероятности), а также определялось требуемым для этого размером выборки. На основе полученных характеристик могут быть установлены свойства симметрии распределения (совпадение значений среднего, моды и медианы, либо равенство значений вероятностей превышения и не превышения среднего значения) и близости его формы к некоторому стандартному, например, к нормальному.
2. Построение гистограммы вероятностей и восстановление эмпирического распределения случайной последовательности на основе полученных вероятностных характеристик и выдвижение гипотезы о виде распределения СП.
3. Проверка верности выдвинутой гипотезы по критериям соответствия (согласия) эмпирических и аналитических вероятностных характеристик, а также определение класса и основных свойств случайной последовательности с оценкой показателей качества оценок и решений.
Рассмотрим основные этапы тестирования случайных последовательностей в предположении выполнения условий стационарности и эргодичности выборочных данных.
Вероятностной характеристикой   случайной величины , определяемой непосредственно путем эксперимента, является некоторое число - математическое ожидание, дисперсия, вероятность события . Символ  означает истинное значение характеристики. Путем обработки результатов экспериментального исследования X получают экспериментальное значение характеристики, статистическую характеристику или оценку  характеристики .
1 2 Следующая страница


Критерии оптимальности в эколого математических моделях

Скачать контрольную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/10777



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com