Реферат на тему "Водород как альтернативный вид топлива"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Водород как альтернативный вид топлива

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 29.32 кб.
Язык: русский
Разместил (а): incognito
1 2 Следующая страница

добавить материал

Введение
Исследования Солнца, звёзд, межзвёздного пространства показывают, что самым распространённым элементом Вселенной является водород (в космосе в виде раскалённой плазмы он составляет 70 % массы Солнца и звёзд).
По некоторым расчётам, каждую секунду в глубинах Солнца примерно 564 млн. тонн водорода в результате термоядерного синтеза превращаются в 560 млн. тонн гелия, а 4 млн. тонн водорода превращаются в мощное излучение, которое уходит в космическое пространство. Нет опасений, что на Солнце скоро иссякнут запасы водорода. Оно существует миллиарды лет, а запас водорода в нём достаточен для того, чтобы обеспечить ещё столько же лет горения.
Человек живёт в водородно-гелиевой вселенной.
Поэтому водород представляет для нас очень большой интерес.
Влияние и польза водорода в наши дни очень велика. Практически все известные сейчас виды топлива, за исключением, разумеется, водорода, загрязняют окружающую среду. В городах нашей страны ежегодно проходит озеленение, но этого, как видно, недостаточно. В миллионы новых моделей автомобилей, которые сейчас выпускаются, заливают такое топливо, которое выпускает в атмосферу углекислый (СО2) и угарный (СО) газы. Дышать таким воздухом и постоянно находиться в такой атмосфере представляет очень большую опасность для здоровья. От этого происходят различные заболевания, многие из которых практически не поддаются лечению, а уж тем более невозможно лечить их, продолжая находиться в можно сказать «заражённой» выхлопными газами атмосфере. Мы хотим быть здоровыми, и разумеется, хотим, чтобы поколения, которые пойдут за нами, тоже не жаловались и не страдали от постоянного загрязняемого воздуха, а наоборот, помнили и доверяли пословице: «Солнце, воздух и вода – наши лучшие друзья».
А пока я не могу сказать, что эти слова оправдывают себя. На воду нам уже вообще приходится закрывать глаза, поскольку сейчас, если даже брать конкретно наш город, известны факты, что из кранов течёт загрязнённая вода, и пить её ни в коем случае нельзя.
Что касается воздуха, то здесь на повестке дня уже много лет стоит не менее важная проблема. И если представить, хотя бы на секунду, что все современные двигатели будут работать на экологически чистом топливе, коим, разумеется, является водород, то наша планета встанет на путь, ведущий к экологическому раю. Но это всё фантазии и представления, которые, к великому нашему сожалению ещё не скоро станут реальностью.
Несмотря на то, что наш мир приближается к экологическому кризису, все страны, даже те, которые в большей степени загрязняют своей промышленностью окружающую среду,  (ФРГ, Япония, США, и как это не прискорбно – Россия) не торопятся паниковать и начинать экстренную политику по её очищению.
Сколько бы мы не говорили о положительном влиянии водорода, на практике это можно увидеть довольно таки не часто. Но всё же разрабатывается множество проектов, и целью моей работы явился не только рассказ о самом чудесном топливе, но и о его применении. Эта тема очень актуальна, поскольку сейчас жителей не только нашей страны, но и всего мира, волнует проблема экологии и возможные пути решения этой проблемы.

Водород на Земле
Водород – один из наиболее распространённых элементов и на Земле. В земной коре из каждых 100 атомов 17 – атомы водорода. Он составляет примерно 0,88 % от массы земного шара (включая атмосферу, литосферу и гидросферу). Если вспомнить, что воды на земной поверхности более
1,5∙1018  м3 и что массовая доля водорода в воде составляет 11,19 %, то становится ясно, что сырья для получения водорода на Земле – неограниченное количество. Водород входит в состав нефти (10,9 – 13,8 %), древесины (6 %), угля (бурый уголь – 5,5%), природного газа (25,13 %). Водород входит в состав всех животных и растительных организмов. Он содержится и в вулканических газах. Основная масса водорода попадает в атмосферу в результате биологических процессов. При разложении в анаэробных условиях миллиардов тонн растительных остатков в воздух выделяется значительное количество водорода. Этот водород в атмосфере быстро рассеивается и диффундирует в верхние слои атмосферы. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство. Концентрация водорода в верхних слоях атмосферы составляет 1∙10-4 %.
Что такое водородная технология?
Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии.
В чём же привлекательность водорода и водородной технологии?
Переход транспорта, промышленности, быта на сжигание водорода – это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами.
Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов. Так, годовая энергетическая потребность такой высокоиндустриальной страны, как ФРГ, может быть обеспечена за счёт водорода, полученного из такого количества воды, которое соответствует 1,5% среднего стока реки Рейн (2180 л воды дают 1 тут в виде H2). Отметим попутно, что на наших глазах становится реальной одна из гениальных догадок великого фантаста Жюля Верна, который устами героя рома «Таинственный остров» (гл. XVII) заявляет: «Вода – это уголь будущих веков».
Водород, получаемый из воды, - один из наиболее энергонасыщенных носителей энергии. Ведь теплота сгорания 1 кг H2 составляет (по низшему пределу) 120 МДж/кг, в то время как теплота сгорания бензина или лучшего углеводородного авиационного топлива – 46 – 50 МДж/кг, т.е. в 2,5 раза меньше 1 т водорода соответствует по своему энергетическому эквиваленту 4,1 тут, к тому же водород – легковозобновляемое топливо.
Чтобы накопить ископаемое горючее на нашей планете, нужны миллионы лет, а чтобы в цикле получения и использования водорода из воды получить воду, нужны дни, недели, а иногда часы и минуты.
Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить  в любых количествах. В то же время водород – сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов.
Как и из чего в настоящее время получают водород?
В распоряжении современных технологов имеются сотни технических методов получения водородного топлива, углеводородных газов, жидких углеводородов, воды. Выбор того или иного метода диктуется экономическими соображениями, наличием соответствующих сырьевых и энергетических ресурсов. В разных странах могут быть различные ситуации. Например, в странах, где имеется дешёвая избыточная электроэнергия, вырабатываемая на гидроэлектростанциях, можно получать водород электролизом воды (Норвегия); где много твёрдого топлива и дороги углеводороды, можно получать водород газификацией твёрдого топлива (Китай); где дешёвая нефть, можно получать водород из жидких углеводородов (Ближний Восток). Однако больше всего водорода получают в настоящее время из углеводородных газов конверсией метана и его гомологов (США, Россия).
В процессе конверсии метана водяным паром, диоксидом углерода, кислородом и оксида углерода водяным паром протекают следующие каталитические реакции. Рассмотрим процесс получения водорода конверсией природного газа (метана).
Получение водорода осуществляется в три стадии. Первая стадия – конверсия метана в трубчатой печи:
CH4 + H2O = CO + 3H2 – 206,4 кДж/моль
или
CH4 +CO2 = 2CO + 2H2 – 248, 3 кДж/моль.
Вторая стадия связана с доконверсией остаточного метана первой стадии кислородом воздуха и введением в газовую смесь азота, если водород используется для синтеза аммиака. (Если получается чистый водород, второй стадии принципиально может и не быть).
CH4 + 0,5O2 = CO + 2H2 + 35,6 кДж/моль.
И, наконец, третья стадия – конверсия оксида углерода водяным паром:
CO + H2O = СO2 + H2 + 41,0 кДж/моль.
Для всех указанных стадий требуется водяной пар, а для первой стадии – много тепла, поэтому процесс в энерготехнологическом плане проводится таким образом, чтобы трубчатые печи снаружи обогревались сжигаемым в печах метаном, а остаточное тепло дымовых использовалось для получения водяного пара.
Рассмотрим, как это происходит в промышленных условиях (схема 1). Природный газ, содержащий в основном метан, предварительно очищают от серы, которая является ядом ля катализатора конверсии, подогревают до температуры 350 – 370 oС и под давлением 4,15 – 4,2 МПа смешивают с водяным паром в соотношении объёмов пар : газ = 3,0 : 4,0. Давление газа перед трубчатой печью, точное соотношение пар : газ поддерживаются автоматическими регуляторами.
Образующаяся парогазовая смесь при 350 – 370 oC поступает в подогреватель, где за счёт дымовых газов нагревается до 510 – 525 oС. Затем парогазовую смесь направляют на первую ступень конверсии метана – в трубчатую печь, в которой она равномерно распределяется по вертикально расположенными реакционным трубам (8). Температура конвертированного газа на выходе из реакционных труб достигает 790 – 820 oС. Остаточное содержание метана после трубчатой печи 9 – 11 % (объёмн.). Трубы заполнены катализатором.[1]
После реакционных труб конвертированная парогазовая смесь проходит подъёмные трубы (9) и по коллектору (10) попадает в шахтный конвертор метана второй ступени (11). Здесь на никелевом катализаторе происходит кислородная конверсия остаточного метана. Температура конвертированного газа на выходе из реактора второй ступени достигает 990 – 1000 oC, остаточное содержание метана в конвертированном газе составляет 0,35 – 0,55 % (объёмн.).
После двухступенчатой конверсии метана, если водород предназначается для синтеза аммиака, в конвертированном газе кроме водорода (57%) и азота (22,4%) содержатся оксид углерода 13,4% и диоксид углерода 7,7% (объёмн.).
Оксид углерода далее превращается в водород и диоксид углерода в системе паровой конверсии. Паровая конверсия оксида углерода до водорода проводится в две ступени (схема 2). Первая ступень конверсии осуществляется при температуре 330 – 400 oС на железо-хромовом катализаторе, при этом на выходе из конвертора первой ступени (1) содержание оксида углерода в конвертированном газе падает до 3,3% (объёмн.), и с таким содержанием оксида углерода газ, пройдя через испаритель (2), вступает во вторую, низкотемпературную ступень конверсии. Здесь на низкотемпературном катализаторе конверсии, содержащем оксидные соединения меди, цинка, алюминия, хрома, при температуре 190-210 оС  происходит доконверсия остаточного оксида углерода до его содержания на выходе из конвертора (3) 0,4 – 0,5 %. Далее газ поступает на очистку углерода различного рода поглотителями. Так в промышленных условиях получают чистый водород и азото-водородную смесь.
Получение водорода – будущая технология
Современная технология обеспечивает ежегодное получение во всём мире десятков миллионов тонн молекулярного водорода. Более 90% его получается каталитической конверсией метана, жидких углеводородов, газификацией твёрдого топлива. Совершенно ясно, что в будущем при переходе на водородную технологию такие источники получения водорода, кроме твёрдого топлива, будут в основном исключены. В качестве основного источника сырья будет использоваться вода. В качестве источника энергии для разложения воды – атомная энергия в различных её видах (тепло, электроэнергия) и энергия воды, ветра в виде электрической энергии, энергия солнечного излучения. Общая картина использования первичных источников энергии для получения водорода представлена на схеме 3.
При внимательном рассмотрении всего комплекса методов получения водорода видно, что если использование горючих ископаемых имеет прямой выход к водороду, то использование других первичных источников энергии в основном базируется на использовании электрической энергии для электролитического разложения воды, энергии Солнца в фотосинтетических системах для разложения воды и атомного тепла в термохимических системах для разложения воды. Электролиз воды проводится в промышленной практике давно и широко описан в литературе. Сейчас делаются значительные усилия в науке промышленности, чтобы использовать неисчерпаемую энергию солнечного излучения для разложения воды. Это и применение фотолизных ячеек для разложения воды, солнечных ячеек для получения электроэнергии с последующим её использованием при электролизе воды. Главная задача, которая здесь решается, заключается в том, чтобы провести под непосредственным воздействием солнечной энергии ряд фотохимических реакций с целевым назначением разложения воды до водорода  кислорода. Суть проблемы заключается в том, чтобы подобрать такие биологические системы, которые будут использовать солнечную энергию для разложения воды.
Но наиболее в технологическом плане являются методы термохимического разложения воды. Эти методы важны тем, что для разложения воды они могут использовать и тепло атомных реакторов,  солнечное тепло, и тепло геотермальных вод, и любые другие виды тепла, например перепад температур верхних и нижних слоёв тропических морей. Разрабатываются и комбинированные термохимические процессы, которые наряду с теплом используют электрическую энергию – термоэлектрохимические процессы, солнечное излучение, фото- и термохимические процессы. Термохимические процессы разложения воды привлекательны ещё и тем, что в результате целого ряда химических превращений, протекающих в термохимическом цикле (системе), из цикла в окружающее пространство ничего, кроме водорода и кислорода, не выделяется. Все химические процессы, сопровождающие разложение воды, находятся в закрытом циркуляционном контуре. В этот контур подводятся только вода и тепло (высокопотенциальное), от контура отводятся водород, кислород и тепло (низкопотенциальное).
                                  Многоликий водород     
Мы подняли лишь краешек занавеса сцен на которой действует один из интереснейших элементов нашей Вселенной – многоликий водород. Вплоть до XX в. Все были убеждены, что за «горючим воздухом» Кавендиша, гидрогениумом Лавуазье скрывается элемент, рождающий при своём соединении с кислородом обычную воду.
Но в XX в. Водород приобрёл многоликость. В природе были открыты три различных водорода, три его изотопа, которые были названы в соответствии со сложностью своих ядер. Самый лёгкий – протий. Водород в обычной воде в основном состоит из протия. Но в воде есть и более тяжёлый водород – дейтерий. На каждые 6700 атомов протия приходится один атом дейтерия.
Существует и сверхтяжёлый водород – тритий. Тритий радиоактивен. Он непрерывно образуется в стратосфере под действием космического излучения. Есть предположения, что это не предел для существования новых, ещё более тяжёлых изотопов водорода, которые должны быть радиоактивны.
Дейтерий – исходный элемент для энергии будущего. Впервые существование тяжёлого водорода – дейтерия было доказано в 1932 году. Несмотря на относительно малое содержание дейтерия в обычной воде, общее количество дейтерия на Земле очень велико. По подсчётам академика И. В. Курчатова, 1 литр обычной воды по энергии содержащегося в нём дейтерия эквивалентен примерно 400 л нефти, поэтому дейтерия кат топлива будущего хватит на сотни миллионов лет. (Вспомните ещё раз героя Жуля Верна).
Количество трития на Земле исчезающее мало. Его меньше 1 кг, но, несмотря на это, его можно обнаружить в каждой капле воды. А его значение в будущей энергетике, возможно, ещё более велико, чем дейтерия. Он неустойчив, период его полураспада – 12, 262 года.
1 2 Следующая страница


Водород как альтернативный вид топлива

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/11587



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com