Реферат на тему "Особенности развития структурная и функциональная организация суперЭВМ"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Особенности развития структурная и функциональная организация суперЭВМ

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 73.94 кб.
Язык: русский
Разместил (а): Химик
1 2 3 4 Следующая страница

добавить материал

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Факультет автоматики и вычислительной техники
Кафедра вычислительной техники
Организация ЭВМ и систем
Реферат на тему
«Особенности развития, структурная и функциональная организация суперЭВМ»
Исполнитель
студент группы 8030  __________  И.А. Переливский
Руководитель
доцент, к.т.н__________А.Д. Чередов
Томск – 2008

СОДЕРЖАНИЕ
Введение.........................................................................................................3
1.                          Краткая история появления параллелелизма в ЭВМ...................5
2.                          Классификация параллельных вычислительных систем............8
3.                          Основные концепции проектирования суперЭВМ....................15
4.                          Краткие харатеристики наиболее распространенных суперкомпьютеров……………………………………………………………….20
5.                          Десятка самых мощных компьютеров........................................30
Заключение..................................................................................................32
Список источников.....................................................................................33

ВВЕДЕНИЕ
В настоящее время переход к новым поколениям вычислительных средств приобретает особую актуальность. Это связано с потребностями решения сложных задач больших размерностей. Непрерывный рост характеристик новых образцов вооружений требует разработки и создания принципиально новых вычислительных средств для поддержки их эффективного функционирования. В связи с этим, все более возрастают требования к производительности и надежности вычислительных средств для решения военно-прикладных задач. Однопроцессорные вычислительные системы уже не справляются с решением большинства военно-прикладных задач в реальном времени, поэтому для повышения производительности вычислительных систем военного назначения все чаще используются многопроцессорные вычислительные системы (МВС).
Наибольший вклад в развитие вычислительных средств всегда вносили технологические решения, при этом основополагающей характеристикой поколения вычислительных систем являлась элементная база, так как переход на новую элементную базу хорошо коррелируется с новым уровнем показателей производительности и надежности вычислительных систем. Разработка все новых и новых поколений микропроцессоров несколько приостановило поиски принципиально новых архитектурных решений. В то же время становится очевидным, что чисто технологические решения утратили свое монопольное положение. Так, например, в ближайшей перспективе заметно возрастает значение проблемы преодоления разрыва между аппаратными  средствами и методами программирования. Данная проблема решается чисто архитектурными средствами, при этом роль технологии является косвенной: высокая степень интеграции создает условия для реализации новых архитектурных решений. При этом стало очевидным, что без кардинальной перестройки архитектурных принципов поддерживать интенсивные темпы развития средств вычислительной техники уже невозможно.
Основными требованиями, предъявляемыми к многопроцессорным системам с массовым параллелизмом, являются: необходимость высокой производительности для любого алгоритма; согласование производительности памяти с производительностью вычислительной части; способность микропроцессоров согласованно работать при непредсказуемых задержках данных от любого источника и, наконец, машинно-независимое программирование.
Увеличение степени параллелизма вызывает увеличение числа логических схем, что сопровождается увеличением физических размеров, в результате чего возрастают задержки сигналов на межсоединениях. Этот фактор приводит либо к снижению тактовой частоты, либо к созданию дополнительных логических ступеней и, в результате, к потере производительности. Рост числа логических схем также приводит к росту потребляемой энергии и отводимого тепла. Кроме того, следует подчеркнуть, что более высокочастотные логические схемы при прочих равных условиях потребляют большую мощность на один вентиль. В результате возникает теплофизический барьер, обусловленный двумя факторами: высокой удельной плотностью теплового потока, что требует применения сложных средств отвода тепла, и высокой общей мощностью системы, что вызывает необходимость использования сложной системы энергообеспечения и специальных помещений.
Другим фактором, влияющим на архитектуру высокопроизводительных вычислительных систем, является взаимозависимость архитектуры и алгоритмов задач. Этот фактор часто приводит к необходимости создания проблемно-ориентированных систем, при этом может быть достигнута максимальная производительность для данного класса задач. Указанная взаимозависимость является стимулом для поиска алгоритмов, наилучшим образом соответствующих возможным формам параллелизма на уровне аппаратуры. А так как для написания программ используются языки высокого уровня, необходимы определенные средства автоматизации процессов распараллеливания и оптимизации программ.

1. КРАТКАЯ ИСТОРИЯ ПОЯВЛЕНИЯ ПАРАЛЛЕЛЕЛИЗМА В ЭВМ
Идеи параллельной обработки появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец, сегодня, все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.
Для того чтобы убедиться, что все основные нововведения в архитектуре современных процессоров на самом деле используются еще со времен, когда ни микропроцессоров, ни понятия суперкомпьютеров еще не было, совершим маленький экскурс в историю, начав практически с момента рождения первых ЭВМ.
IBM 701 (1953), IBM 704 (1955): разрядно-параллельная память, разрядно-параллельная арифметика. Все самые первые компьютеры (EDSAC, EDVAC, UNIVAC) имели разрядно-последовательную память, из которой слова считывались последовательно бит за битом. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой.
IBM 709 (1958): независимые процессоры ввода/вывода. Процессоры первых компьютеров сами управляли вводом/выводом. Однако скорость работы самого быстрого внешнего устройства, а по тем временам это магнитная лента, была в 1000 раз меньше скорости процессора, поэтому во время операций ввода/вывода процессор фактически простаивал. В 1958г. к компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709. Данная модель получилась удивительно удачной, так как вместе с модификациями было продано около 400 экземпляров, причем последний был выключен в 1975 году - 20 лет существования!
IBM STRETCH (1961): опережающий просмотр вперед, расслоение памяти. В 1956 году IBM подписывает контракт с Лос-Аламосской научной лабораторией на разработку компьютера STRETCH, имеющего две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка для согласования низкой скорости выборки из памяти и скорости выполнения операций.
ATLAS (1963): конвейер команд. Впервые конвейерный принцип выполнения команд был использован в машине ATLAS, разработанной в Манчестерском университете. Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Конвейеризация позволила уменьшить время выполнения команд с 6 мкс до 1,6 мкс. Данный компьютер оказал огромное влияние, как на архитектуру ЭВМ, так и на программное обеспечение: в нем впервые использована мультипрограммная ОС, основанная на использовании виртуальной памяти и системы прерываний.
CDC 6600 (1964): независимые функциональные устройства.
Фирма Control Data Corporation (CDC) при непосредственном участии одного из ее основателей, Сеймура Р.Крэя (Seymour R.Cray) выпускает компьютер CDC-6600 - первый компьютер, в котором использовалось несколько независимых функциональных устройств. Для сравнения с сегодняшним днем приведем некоторые параметры компьютера:
§   время такта 100нс;
§   производительность 2-3 млн. операций в секунду;
§   оперативная память разбита на 32 банка по 4096 60-ти разрядных слов;
§   цикл памяти 1мкс;
§   10 независимых функциональных устройств.
Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM.
CDC 7600 (1969): конвейерные независимые функциональные устройства.
CDC выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами - сочетание параллельной и конвейерной обработки. Основные параметры:
§   такт 27,5 нс;
§   10-15 млн. опер/сек;
§   8 конвейерных ФУ;
§   2-х уровневая память.
ILLIAC IV (1974): матричные процессоры.
§   Проект: 256 процессорных элементов (ПЭ) = 4 квадранта по 64ПЭ, возможность реконфигурации: 2 квадранта по 128ПЭ или 1 квадрант из 256ПЭ, такт 40нс, производительность 1Гфлоп;
§   работы начаты в 1967 году, к концу 1971 изготовлена система из 1 квадранта, в 1974г. она введена в эксплуатацию, доводка велась до 1975 года;
§   центральная часть: устройство управления (УУ) + матрица из 64 ПЭ;
§   УУ это простая ЭВМ с небольшой производительностью, управляющая матрицей ПЭ; все ПЭ матрицы работали в синхронном режиме, выполняя в каждый момент времени одну и ту же команду, поступившую от УУ, но над своими данными;
§   ПЭ имел собственное АЛУ с полным набором команд, ОП - 2Кслова по 64 разряда, цикл памяти 350нс, каждый ПЭ имел непосредственный доступ только к своей ОП;
§   сеть пересылки данных: двумерный тор со сдвигом на 1 по границе по горизонтали.
Несмотря на результат в сравнении с проектом: стоимость в 4 раза выше, сделан лишь 1 квадрант, такт 80нс, реальная производительность до 50Мфлоп - данный проект оказал огромное влияние на архитектуру последующих машин, построенных по схожему принципу, в частности: PEPE, BSP, ICL DAP.
CRAY 1 (1976): векторно-конвейерные процессоры.
В 1972 году С. Крэй покидает CDC и основывает свою компанию Cray Research, которая в 1976г. выпускает первый векторно-конвейерный компьютер CRAY-1: время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

2. КЛАССИФИКАЦИЯ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ
Основным параметром классификации паралелльных компьютеров является наличие общей (SMP) или распределенной памяти (MPP). Нечто среднее между SMP и MPP представляют собой NUMA-архитектуры, где память физически распределена, но логически общедоступна. Кластерные системы являются более дешевым вариантом MPP. При поддержке команд обработки векторных данных говорят о векторно-конвейерных процессорах, которые, в свою очередь могут объединяться в PVP-системы с использованием общей или распределенной памяти. Все большую популярность приобретают идеи комбинирования различных архитектур в одной системе и построения неоднородных систем.
При организациях распределенных вычислений в глобальных сетях (Интернет) говорят о мета-компьютерах, которые, строго говоря, не представляют из себя параллельных архитектур.
Более подробно особенности всех перечисленных архитектур будут рассмотрены далее на этой странице, а также в описаниях конкретных компьютеров - представителей этих классов. Для каждого класса приводится следующая информация:
§ краткое описание особенностей архитектуры;
§    примеры конкретных компьютеров;
§    перспективы масштабируемости;
§    типичные особенности построения операционных систем;
§    наиболее характерная модель программирования (хотя возможны и другие).
Таблица 2.1 – Массивно-параллельные системы (MPP)
Архитектура
Система состоит из однородных вычислительных узлов, включающих:
§     один или несколько центральных процессоров (обычно RISC);
§     локальную память (прямой доступ к памяти других узлов невозможен);
§     коммуникационный процессор или сетевой адаптер;
§     иногда - жесткие диски (как в SP) и/или другие устройства В/В.
К системе могут быть добавлены специальные узлы ввода-вывода и управляющие узлы. Узлы связаны через некоторую коммуникационную среду (высокоскоростная сеть, коммутатор и т.п.)
Примеры
IBM RS/6000 SP2, Intel PARAGON/ASCI Red, CRAY T3E, Hitachi SR8000, транспьютерные системы Parsytec.
Масштабируемость
Общее число процессоров в реальных системах достигает нескольких тысяч (ASCI Red, Blue Mountain).
Операционная система
Существуют два основных варианта:
Полноценная ОС работает только на управляющей машине (front-end), на каждом узле работает сильно урезанный вариант ОС, обеспечивающие только работу расположенной в нем ветви параллельного приложения. Пример: Cray T3E.
На каждом узле работает полноценная UNIX-подобная ОС (вариант, близкий к кластерному подходу). Пример: IBM RS/6000 SP + ОС AIX, устанавливаемая отдельно на каждом узле.
Модель программирования
Программирование в рамках модели передачи сообщений ( MPI, PVM, BSPlib)
Таблица 2.2 – Симметричные мультипроцессорные системы (SMP)
Архитектура
Система состоит из нескольких однородных процессоров и массива общей памяти (обычно из нескольких независимых блоков). Все процессоры имеют доступ к любой точке памяти с одинаковой скоростью. Процессоры подключены к памяти либо с помощью общей шины (базовые 2-4 процессорные SMP-сервера), либо с помощью crossbar-коммутатора (HP 9000). Аппаратно поддерживается когерентность кэшей.
Примеры
HP 9000 V-class, N-class; SMP-cервера и рабочие станции на базе процессоров Intel (IBM, HP, Compaq, Dell, ALR, Unisys, DG, Fujitsu и др.).
Масштабируемость
Наличие общей памяти сильно упрощает взаимодействие процессоров между собой, однако накладывает сильные ограничения на их число - не более 32 в реальных системах. Для построения масштабируемых систем на базе SMP используются кластерные или NUMA-архитектуры.
Операционная система
Вся система работает под управлением единой ОС (обычно UNIX-подобной, но для Intel-платформ поддерживается Windows NT). ОС автоматически (в процессе работы) распределяет процессы/нити по процессорам (scheduling), но иногда возможна и явная привязка.
Модель программирования
Программирование в модели общей памяти. (POSIX threads, OpenMP). Для SMP-систем существуют сравнительно эффективные средства автоматического распараллеливания.
Таблица 2.3 – Системы с неоднородным доступом к памяти (NUMA)
Архитектура
Система состоит из однородных базовых модулей (плат), состоящих из небольшого числа процессоров и блока памяти. Модули объединены с помощью высокоскоростного коммутатора. Поддерживается единое адресное пространство, аппаратно поддерживается доступ к удаленной памяти, т.е. к памяти других модулей. При этом доступ к локальной памяти в несколько раз быстрее, чем к удаленной.
В случае, если аппаратно поддерживается когерентность кэшей во всей системе (обычно это так), говорят об архитектуре cc-NUMA (cache-coherent NUMA)
Примеры
HP HP 9000 V-class в SCA-конфигурациях, SGI Origin2000, Sun HPC 10000, IBM/Sequent NUMA-Q 2000, SNI RM600.
Масштабируемость
Масштабируемость NUMA-систем ограничивается объемом адресного пространства, возможностями аппаратуры поддежки когерентности кэшей и возможностями операционной системы по управлению большим числом процессоров. На настоящий момент, максимальное число процессоров в NUMA-системах составляет 256 (Origin2000).
Операционная система
Обычно вся система работает под управлением единой ОС, как в SMP. Но возможны также варианты динамического "подразделения" системы, когда отдельные "разделы" системы работают под управлением разных ОС (например, Windows NT и UNIX в NUMA-Q 2000).
Модель программирования
Аналогично SMP.
1 2 3 4 Следующая страница


Особенности развития структурная и функциональная организация суперЭВМ

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/14961



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com