Реферат на тему "Реализация хладоресурса углеводородных топлив в силовых и энергетических установках"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Реализация хладоресурса углеводородных топлив в силовых и энергетических установках

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 280.73 кб.
Язык: русский
Разместил (а): Галимов
1 2 3 4 Следующая страница

добавить материал

 

На правах рукописи

 
 
 

ГАЛИМОВ ФАРИД МИСБАХОВИЧ

 
 
 
 
Реализация хладоресурса углеводородных топлив в силовых и энергетических установках
 

05.14.04 –Промышленная теплоэнергетика

 

 

АВТОРЕФЕРАТ

 

диссертации на соискание ученой степени

доктора технических наук

 
Казань
Работа выполнена в Казанском государственном технологическом университете
 
Научный консультант: доктор технических наук, профессор, член-корреспондент АН Татарстана Гарифуллин Ф.А.
 
Официальные оппоненты:
доктор технических наук, профессор,
член-корреспондент Российской АН Назмиев Ю.Г. 
 
доктор технических наук, профессор Шевченко И.В.
 
доктор технических наук, профессор,
член-корреспондент АН Татарстана Даутов Г.Ю.    
Ведущая организацияЦентральный институт авиационного моторостроения, г.Москва
Защита состоится «____» ____________ 2001 года в ____ часов на заседании диссертационного совета Д 212.080.06 в Казанском государственном технологическом университете по адресу: 420015, г.Казань, ул.К.Маркса,68, аудитория А-330, зал заседаний Ученого совета.
С диссертацией можно ознакомиться в библиотеке Казанского государственного технологического университета.
Автореферат диссертации разослан «___»_________  200__ г.
Ученый секретарь диссертационного совета,
доктор технических наук, профессор                                         А.Г.Лаптев
 

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

 
Удовлетворение потребностей современной промышленности и общества в электрической и тепловой энергии может быть решено путем переоборудования существующих отопительных котельных в теплофикационные энергетические газотурбинные установки. Наиболее эффективными газотурбинными установками малой мощности являются установки, выполненные на базе авиационных газотурбинных двигателей (Скибин В.А., Солонин В.И., Цховребов М.М. Перспективы авиационных двигателей в развитии транспорта и энергетики// Конверсия в машиностроении. –1999. №2. ‑С.28‑35.; Алемасов В.Е., Кравцов Я.И. и др. Автономная ТЭЦ на базе газотурбинных технологий /Матер. научно-практ. конф.«Энергосбер. в хим. технол.» Казань,2000.С.60-63.). На базе серийных и опытных авиационных двигателей в России разработана широкая номенклатура наземных газотурбинных установок класса мощности от 0.5 до 60 МВт. Целый ряд таких установок на сегодняшний день уже освоен и успешно эксплуатируется на газоперекачивающих станциях. Назначенный ресурс таких установок составляет величину 100 000 часов, а межремонтные 25 000 часов. Кроме того, авиационные двигатели, отработавшие свой ресурс в авиации, находят широкое применение в качестве высокоэффективных источников механической, газодинамической и тепловой энергии в судостроении, сушильных установках, пожаротушении, в аэродромных и железнодорожных снегоочистителях и других индустриальных установках, используемых во многих отраслях народного хозяйства. Наземный ресурс таких установок соизмерим, а в ряде случаев в несколько раз превышает отработанный. При дальнейшей эксплуатации возникают проблемы, связанные с образованием коксовых отложений и влиянием его на теплопередающие свойства поверхности.
Аналогичные проблемы возникают и в нефтехимической,  нефтеперерабатывающей промышленности, энергетике, автомобильной промышленности и других отраслях народного хозяйства.
Актуальность работы
Диссертация посвящена решению актуальной научно-технической проблемы –обеспечению эффективного применения жидких углеводородных топлив в теплонапряженных узлах силовых, энергетических и технологических установок. Повышение топливной экономичности связано с увеличением хладоресурса и удельной работоспособности углеводородных топлив и реализации их в термодинамическом цикле. Значительного прироста хладоресурса и работоспособности можно достичь при перегреве топлив, т.е. за счет повышения их предельных температур нагрева, однако при этом происходит образование смолистых и коксовых отложений. Эти отложения, прежде всего, отрицательно сказываются на ресурсе и надежности агрегатов установки, в связи с чем при разработке последних остро встает вопрос по снижению интенсивности образования коксоотложений. Работы в этом направлении в настоящее время носят чисто эмпирический характер и не опираются на научные представления о механизме образования коксоотложений. Одной из ключевых задач решения этой проблемы является изучение процессов, происходящих в топливах при их нагреве, закономерностей тепло- и массообмена в углеводородных топливах в широком диапазоне изменения режимных параметров, свойств образовавшихся при этом отложений, механизмов их подавления и удаления.
Данные исследования проводились в соответствии с Координационным планом НИР Академии наук по комплексной проблеме “Теплофизика и энергетика” на 1986‑1990 гг. (разделы 1.9.1.3., 1.9.1.9., 1.9.1.10); Межотраслевых программ “Химическая регенерация тепла для повышения экономичности, надежности и экологической чистоты силовых и транспортных средств”; темы “Федерация -МАП” на 1991‑1995 гг.; Федеральной целевой научно-технической программы «Исследования и разработки по приоритетным направлениям развития науки и техники гражданского назначения» 1997-1999 г.г. комплексной программы Минвуза РСФСР “Человек и окружающая среда”, а также по договорам с ЦИАМ им. П.И.Баранова.
 
Целью работы является разработка научных основ повышения охлаждающей способности углеводородных топлив для охлаждения теплонапряженных узлов и каналов силовых и энергетических установок. Для достижения этой цели были поставлены следующие задачи:
-исследовать закономерности образования смолистых и коксовых отложений в каналах при течении жидких углеводородных топлив в условиях жидкофазного окисления;
-изучить влияние отложений на процессы теплообмена на греющей поверхности нагревателя;
-экспериментально определить теплофизические свойства отложений;
-разработать методы подавления процессов образования смолистых и коксовых отложений;
-разработать методы удаления смолистых и коксовых отложений;
-исследовать закономерности образования смолистых и коксовых отложений в каналах при течении жидких углеводородных топлив в условиях термической деструкции;
 
Научная новизна
В данной работе впервые комплексно исследованы процессы образования смолистых и коксовых отложений в каналах при течении жидких углеводородных топлив в условиях жидкофазного окисления и термической деструкции. Учтено влияние целого ряда факторов, влияющих на образование отложений, таких, как химический состав и фазовое состояние топлива, материал и состояние поверхности, контактирующих с топливом стенок. Комплексно рассмотрены вопросы подавления образования отложений. Разработаны высокоэффективные методы удаления отложений, отличающиеся от прототипов низкой энергоемкостью, высокой (практически 100 %-ной) эффективностью и возможностью сохранения каталитических свойств поверхности стенок канала.
Автором получены новые данные:
-по закономерностям образования смолистых и коксовых отложений в каналах при течении жидких углеводородных топлив в условиях жидкофазного окисления;
-по влиянию отложений на процессы теплообмена на греющей поверхности нагревателя;
-по теплофизическим свойствам отложений;
-по закономерностям подавления процессов образования смолистых и коксовых отложений;
-по закономерностям удаления смолистых и коксовых отложений из элементов силовых, энергетических и технологических установок;
-по закономерностям образования смолистых и коксовых отложений в каналах при течении жидких углеводородных топлив в условиях термической деструкции.
 
Достоверность полученных данных обеспечивалась применением аттестованных измерительных средств и апробированных методик измерения и обработки данных, анализом точности измерений, повторяемостью результатов, а также воспроизводимостью результатов по теплообмену, свойствам, по подавлению и удалению отложений и применением статистических методов оценки погрешностей и обработки экспериментальных данных.
 
Практическая ценность
Результаты работы послужили основой для создания:
-способов охлаждения теплонапряженных узлов силовых, энергетических и технологических установок;
-способов подавления процессов образования отложений в топливных системах силовых и энергетических;
-способов удаления отложений из авиационных двигателей и силовых, энергетических и технологических установок.
 
Реализация основных положений диссертации
Основные результаты исследования использованы в следующих организациях:
-МКБ «Гранит» в комплексе работ по разработке методов очистки топливных коллекторов от смолистых и коксовых отложений;
-в СГНПП «Труд» в комплексе работ по подавлению смолистых и коксовых отложений при проектировании топливного коллектора;
-в Центральном институте авиационного моторостроения в комплексе работ по повышению охлаждающей способности реактивных топлив в условиях фазовых превращений и разработке методов и программ по созданию НТЗ по перспективной тематике;
-в НПО «Пищепромпроектмаш» при проектировании теплообменного оборудования пищевой промышленности;
-в ЗАО «Татнефтьавиасервис» в работах по предотвращению и удалению отложений в топливоподающих трубопроводах и емкостях по хранению углеводородных топлив;
-в учебных курсах авиационных, технологических и энергетических специальностей ВУЗов (МГФТУ, КГТУ, МАИ, МЭИ и др.).
Основные положения, выносимые на защиту
Новые результаты экспериментальных исследований, методик расчета теплообмена, закономерностей подавления образования отложений, внедрение которых в практику способствует обеспечению эффективного применения жидких углеводородных топлив в теплонапряженных узлах силовых и энергетических установок. Способы удаления смолистых и коксовых отложений из элементов силовых, энергетических, технологических установок и двигателей летательных аппаратов.
 
Апробация работы
Основные результаты доложены на научно-технических конференциях, в т.ч. на:
·    на ежегодных научно-технических конференциях КГТУ-КХТИ (г.Казань 1989-2000 гг.);
·    II Межотраслевой научно-технической конференции по проблеме химической регенерации тепла в летательных аппаратах и силовых установках (Москва 1991 г.);
·    II  Минском международном форуме по тепломассообмену (Минск 1992 г.);
·    научно-технической конференции «Экологическая защита городов» (Москва 1996г.);
·    11 международном симпозиуме по физике кипения и конденсации (Москва 1997 г.).
·    11 и 12­ом Межвузовском научно‑техническом семинаре «Внутрикамерные процессы в энергетических установках, акустика, диагностика» (Казань 1999, 2000).
·    Международной научной конференции «Двигатели XXI века» (Москва 2000 г.)
 
Публикации
По теме диссертации опубликовано 33 печатных работы, в т.ч. 9 монографий.
 
Объем и структура работы
Диссертация состоит из введения, шести глав, заключения и списка использованной литературы. Содержание диссертации изложено на 250 страницах машинописного текста, содержит 9 таблиц, 54 рисунка. Список использованной литературы включает 212 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертации и дан краткий обзор содержания глав диссертации.
 
В главе 1 представлено состояние проблемы и сформулированы цели и основные задачи исследования, его научная новизна и практическая значимость. Отмечено, что при реализации хладоресурса топлив возможны ограничения по температуре нагрева, накладываемые термической стабильностью топлива и давлением насыщенных паров.
Физический хладоресурс стандартных углеводородных топлив вследствие небольших значений теплоемкости, относительно невелик, и при нагреве до температуры начала кипения не превышает 500-600 кДж/кг (Рис.1). Реализация теплоты парообразования и перегрев до 400оС позволяет достичь хладоресурса до 1300-1400 кДж/кг, однако увеличение предельных температур нагрева топлив осложняет процесс теплообмена тем, что на поверхности образуются коксоотложения, которые влияют на теплопередачу как за счет роста термического сопротивления стенки, так и за счет влияния на теплоотдачу вследствие изменения состояния поверхности. Одним из основных факторов, определяющих процесс образования кокса, является жидкофазное окисление топлив растворенным в них кислородом.

Рис.1. Хладоресурс топлив DНх в зависимости от температуры Т при Р=0.1 МПа:
1 –хладоресурс топлива Т-6, соответствующий максимальной температуре применения;
2 –хладоресурс топлива РТ, Т-8, соответствующий максимальной температуре применения;
3 –хладоресурс топлива Т-1, ТС-1, Т-2, соответствующий максимальной температуре применения.
Анализ показывает, что образование отложений является весьма сложным процессом, зависящим как от кинетики химических превращений, так и от внутренних характеристик течения и теплообмена, которые в свою очередь могут во многом определяться структурой и свойствами самих отложений.
Значительный прирост хладоресурса и работоспособности может быть достигнут при перегреве топлив за счет использования эндотермического разложения топлив в паровой фазе. Суммарный хладоресурс углеводородных топлив при нагреве до 700-800 оС может достигать значений 2500-4000 кДж/кг. Однако вместе с тем следует отметить, что процессы, происходящие в топливах в области высоких температур, практически не изучены. Кроме того, при фазовых превращениях и деструкции топлив в силовых, энергетических и технологических установках происходит образование смоло- и коксоотложений, которые в свою очередь приводят к росту гидравлического сопротивления трубопроводов и термического сопротивления стенок. Образование кокса в топливных коллекторах и форсунках камер сгорания, прежде всего, отрицательно сказывается на ресурсе и надежности агрегатов и установок, в связи с чем при разработке последних стремятся снизить интенсивность образования коксоотложений. Работы в этом направлении в настоящее время носят чисто эмпирический характер и не опираются на научные представления о механизме образования коксоотложений при течении нагреваемых топлив (горючих) в узлах и каналах аппаратов.
В главе 2 приведены экспериментальные установки для изучения закономерностей образования отложений в условиях жидкофазного окисления углеводородных топлив. Отмечено, что образование низкотемпературных отложений, которые в основном отмечаются на стенках складских топливных резервуаров, фильтрах тонкой очистки заправочных средств, а также в топливных системах самолетов на фильтрах тонкой очистки, деталях топливоподающей аппаратуры и в топливомасляных радиаторах могут забивать фильтры, нарушать работу топливорегулирующей аппаратуры и снижать эффективность охлаждения двигателей и теплообменных аппаратов. Обнаружено, что механизм окисления топлив меняется при достижении температур 110 ¸ 130 оС. На рисунке 2 представлены данные по образованию нерастворимых осадков при хранении топлив Т-1, ТС-1 и РТ в зависимости от температуры при статических (при контакте с надтопливным воздухом) условиях.
Как видно из этого рисунка, при низких температурах нет принципиального различия в механизме образования отложений в реактивных топливах. Эти данные соответствуют выводам работ Г.Ф.Большакова (Образование гетерогенной системы при окислении углеводородных топлив/ Большаков Г.Ф. -Наука. Сиб. Отд-ние, 1990. –248 с.), в которой отмечается, что, начиная от температуры начала кристаллизации и до температур начала вытеснения легких фракций, меняется лишь скорость процесса отложения нерастворимых осадков.

Рис.2. Масса нерастворимого осадка, образовавшегося при хранении реактивных топлив в течение 1500 часов на стеклянной поверхности в зависимости от температуры

Рис.3. Склонность топлив к образованию нерастворимых осадков при повышенных температурах для статических условий.
С повышением температуры увеличивается количество образующегося за определенное время осадка. Как видно из рисунка 3, при значениях температуры 150 - 170 оС (в зависимости от марки топлива) оно достигает максимума, а с дальнейшим повышением температуры снижается. Объяснение этому можно найти в уменьшении доступа кислорода к топливу по мере роста температуры.
Изучены кинетические закономерности окисления реактивных топлив в контакте с конструкционными материалами топливных систем летательных аппаратов. Обнаружено, что среди исследованных металлов имеются как катализаторы, так и ингибиторы окисления.
1 2 3 4 Следующая страница


Реализация хладоресурса углеводородных топлив в силовых и энергетических установках

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/28



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com