Реферат на тему "Природа и проявление геотектонических процессов сейсмическая и вул"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Курсовая на тему Природа и проявление геотектонических процессов сейсмическая и вул

скачать

Найти другие подобные рефераты.

Курсовая *
Размер: 167.2 кб.
Язык: русский
Разместил (а): Иванова Катя
1 2 Следующая страница

добавить материал

Московская Государственная Технологическая Академия
 
 
 
 
 
 
 
 
 
 

Курсовая работа

 
студентки:
Тема: Природа и проявления геотектонических процессов: сейсмическая      и вулканическая активность
 
Специальность: Курс:
Группа:
Факультет: Технологического менеджмента
Предмет: Геофизика и Геохимия Биосферы
 
 
 
 
 
Составил:_________ / /
 
Принял ___________ /                             /
 
 
 
 

Москва   2003 год

 
 

-2-
Содержание:
 
1.     Введение.
2.     Фон сейсмической активности.
3.     Изучение сейсмической активности.
4.     Вулканы и вулканическая активность.
5.     Распространение вулканической активности.
6.     Вулканическая опасность.
-3-

Введение

          Сейсмология изучает землетрясения, их механизмы и последствия, распространение сейсмических волн, а также все виды движений земной коры, которые регистрируются сейсмографами на суше и на дне океанов и морей. Наиболее активные землетрясения наблюдаются в ослабленных зонах вдоль границ тектонических плит. При этом возбуждаются три типа сейсмических волн: продольные (P), поперечные (S) и поверхностные (волны Лява и Рэлея). Сильные землетрясения могут также возбуждать свободные колебания всей Земли.
          Сейсмические методы используются для изучения внутреннего строения Земли в целом и ее структуры на разных глубинах. Следует отметить, что на основе результатов сейсмических исследований установлено, что Земля состоит из ядра, мантии и земной коры. Использование цифровых сейсмографов сыграло огромную роль в изучении земных недр и позволило регистрировать землетрясения. По данным об изменениях скоростей волн была составлена трехмерная схема строения мантии. Структура верхней мантии, определяемая по скоростям сейсмических волн, различна для районов срединно-океанических хребтов и материков и соответствует распределению теплового потока. Сходная картина в изменениях скоростей волн отмечается и в нижней мантии, однако они не коррелируют с макрорельефом поверхности Земли.
          В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, а поскольку андезиты по своему составу сходны с континентальной земной корой, многие геологи считают, что континентальная кора в этих районах наращивается за счет поступления мантийного вещества.
           Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, вероятно, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, некоторые геологи предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы
-4-
II. Фон сейсмической активности.
          Определение уровня фона сейсмической активности – это один из самых сложных вопросов. Именно с ним связаны ошибки и противоречия, иногда встречающиеся в нашей информации, особенно в начале нашей деятельности. Пример «первого блина комом» вышел 2 февраля 2000 г. Главная проблема здесь состоит в том, что для точного выделения «фона», необходимо зафиксировать хотя бы несколько извержений, тогда станет ясно, что такое «выше фона». Поэтому, только постепенно набираясь опыта, возможно, получить точное определение.
              В настоящее время дежурные операторы делят всю возможную сейсмическую активность на две категории: 1) фоновая; 2) выше фона. Деление производиться на качественном уровне с учетом накопленного опыта. Понятие «фоновая» означает, что подобная сейсмическая активность уже была в практике регистрации, и она, во-первых, не сопровождала проявления вулканической активности представляющие реальную опасность (пепловые выбросы, лавовые потоки, лавины из раскаленного материала) и, во-вторых, не стала предвестником подобной вулканической опасности. Понятие «выше фона» включает все оставшиеся и в том числе еще ни разу незарегистрированные случаи проявления сейсмической активности. Все оценки опираются на данные двух баз. Первая – это база вулканических землетрясений . Главными фиксируемыми параметрами для каждого землетрясения выступают время в очаге, координаты эпицентра, глубина гипоцентра и энергетическая оценка силы землетрясения (пока класс по s-волне). Эта количественная база позволяет делать количественные оценки и, следовательно, является единственным вариантом получения оценок вулканической опасности формализованным путем и, может быть, в будущем в автоматическом режиме. Но до этого еще очень далеко, и главная проблема – это недостаточное количество станций. (Необходимо как минимум 4-5 станций, необязательно трех- или четырехканальных, на одном вулкане с удалением от кратера от 1 до 10 км). Поэтому в настоящее время большую роль играет вторая «качественная» база наблюдений . Главной ее опорой является архив зарегистрированных сейсмических сигналов сопоставленных во времени с данными визуальных наблюдений за вулканической активностью, а в последнее время еще добавились и спутниковые наблюдения. В данной базе фиксируются по возможности  некоторые количественные параметры, такие как время, амплитуда и продолжительность сигналов, но положение источника сигнала всегда оценивается с большой долей условности. Поэтому и оценки носят вероятностный, качественный характер. Но большой накопленный опыт позволяет в целом делать правильные выводы о вулканической опасности на подобного рода данных сейсмологических наблюдений. Фиксирование количественных значений позволяет устанавливать корреляционные связи между зарегистрированными сигналами и проявлениями вулканической активности, например: зависимость высоты пепловых выбросов от амплитуды сигнала и, следовательно, оценивать масштабы извержения в целом. Такие данные являются часто единственным источником информации о вулканической опасности, когда другие наблюдения невозможны. Приведем некоторые значения по определению «фоновой сейсмичности», которые используются дежурным геофизиком в настоящее время для разных вулканов. При этом для всех вулканов, если регистрируются сейсмические сигналы свидельствующие о вулканической активности (вторая «качественная» база фиксирующая дрожание, сейсмические события, сопровождающие пепловые выбросы, пирокластические потоки и т.д.), то сейсмичность считается «выше фоновой». Если на вулкане регистрируются только землетрясения непосредственно из постройки или под постройкой (обычно до глубины 5 км), которые возможно обработать и зафиксировать в первой количественной базе, то верхняя граница уровня фона для различных вулканов определяется условно следующим образом:
-5-
  1. Вулканы Авачинский и Корякский – 5 землетрясений больше 4 класса за сутки или 2 землетрясения больше 5 класса за сутки. Для района Авачинско-Корякской группы вулканов полный каталог существует с 1994 года, но никаких проявлений вулканической активности за этот период зафиксировано не было, поэтому точно определить, что такое «выше фона» невозможно. Но зато 6 летний опыт позволил опровергнуть ложные тревоги, что уже достижение.
  2. Вулкан Ключевской – 10 землетрясений больше 4 класса за сутки или 5 землетрясений больше 5 класса за сутки или 3 землетрясения больше 6 класса за сутки. Для Ключевского вулкана полная база вулканических землетрясений существует в КОМСП с 01.01.1999 г. Но пока только в 1999 г на этом вулкане были зафиксированы небольшие (2-3 км) пепловые выбросы, несмотря на высокую относительно других вулканов сейсмическую активность. Привлечение данных полученных до 1999 г. во многом поможет более точно определить уровень фона.
  3. Вулкан Безымянный – 5 землетрясений больше 4 класса за сутки или 2 землетрясения больше 5 класса за сутки. В 1999-2000 г. зафиксировано 3 извержения, что позволило определить такой порог. Возможно такой, относительно других пониженный, порог может быть следствием высокой активности вулкана или относительно небольших размеров(?).
  4. Вулканы Шевелуч, Карымский, Горелый, Мутновский – тоже активные вулканы, но региональная сеть позволяет регистрировать землетрясения только больше 5.5-6 класса, что недостаточно. Поэтому определение «фона» на данных базы вулканических землетрясений невозможно. В настоящее время сейсмичность для этих вулканов определяется практически по одной станции, и главный упор делается на «качественную» базу.
  5. Для других активных вулканов удаление до ближайшей станции составляет более 20 км, что не позволяет следить за сейсмической активностью этих вулканов.
III. Изучение сейсмической активности.
             Сейсмический процесс есть один из видов геотектонических процессов, обладающих свойством автомодельности. Землетрясения являются проявлением самоорганизующегося энергообмена блочно-иерархичной горной породы с внешней средой. Новые представления о сейсмическом процессе требуют радикального изменения методов лабораторного эксперимента.      В качестве примера нового подхода к эксперименту обсуждаются результаты одно и двуосного нагружения в режиме постоянства скорости деформации бетонной модели, которая, благодаря наличию имитаторов структуры тектонического разрыва, расчленялась на агрегат блоков. В том же режиме нагружения блочная модель излучала квазипериодические акустические импульсы, сопровождающиеся частичным сбросом нагрузки и скачками локальных деформаций. Эти импульсы предлагается рассматривать как аналоги сильных землетрясений, а их квазипериодическую последовательность как аналог сейсмического процесса.
          Методология лабораторного сейсмического эксперимента основывается на существующих представлениях о природе сейсмического процесса. До недавнего времени эти представления были связаны с понятиями сплошности линейной упругости геофизической среды – горной породы.По существу дела понятие о сейсмическом процессе практически не использовалось – ученые сейсмологи занимались исследованием самого землетрясения, трактуя его как образование и развитие трещины, нарушающей сплошность среды.Однако, за последнее десятилетие работы, посвященные новой блочно-иерархической модели геофизической среды , существенно изменили методологическую основу сейсмологии. Сейчас большинство сейсмологов признают, что сейсмический процесс есть один из видов геотектонических процессов, развивающихся во времени и состоящих из последовательности различных этапов, связанных друг с другом и характеризуемых определенной временной последовательностью. Есть основания думать, что сейсмические циклы входят в общую иерархию геофизических циклов, свидетельствуя о том, что автомодельность свойственна широкому классу геолого-геофизических самоорганизующихся процессов.
Естественно, что столь радикальные изменения в понимании задач сейсмологии должны были бы
-6-
отразиться и на лабораторных исследованиях в этой области. Однако пока что существенных изменений не произошло. По-прежнему здесь царит идея, что землетрясение есть образование трещины в сплошном массиве горной породы, тогда как, по новым представлениям, землетрясения происходят в блочной среде, горной породе, расчлененной трещинами. Горная порода, в которой развивается сейсмологический процесс не разрушается, она остается неизменной сложной блочно-иерархической системой в целом, не меняющей своих свойств. Землетрясения являются одним из проявлений самоорганизующегося процесса энергомассобмена горной породы с окружающей внешней средой. В расчлененную трещинами блочную горную породу извне втекают жидкости и газы,из недр земных поступает энергия в виде тепла, упругости, возникающей при геотектонических движениях и т.п.
         Среда, горная порода, приспосабливается в процессе энергомассобмена, самостоятельно изменяя свою структуру, отдельные блоки несколько смещаются друг относительно друга, консолидируются в агрегаты из нескольких (иногда очень многих) блоков, реагирующих на внешние воздействия, как единое целое; наоборот, уже существующие агрегаты блоков могут разрушаться, распадаясь на несколько более мелких. Важным обстоятельством является то, что все эти процессы приспособления, протекающие в геофизической среде, происходят вблизи от некоторого положения равновесия, определяемого неким средним состоянием ее энергоемкости. Это состояние для такого огромного тела, каким является Земля, практически со временем не меняется (постоянно по крайней мере в течение миллионов лет). Об этом свидетельствует постоянство местоположение  сейсмических очагов, обнаруживаемое из исторических данных (примерно за 2 тысячелетия).
          Сотрудниками Института О.И.Гушенко, А.О.Мострюковым и В.А.Петровым разработан комплекс программ и рассчитаны карты полей напряжений земной коры Альпийского складчатого пояса на участке от Греции до Афганистана и впервые выявлена «блочность» структуры современного поля напряжений, отражающая, по-видимому, сложный процесс переработки тектонического плана региона и, несомненно, определяющая характер сейсмического процесса .
Исходя из изложенного, следует, что новые представления о сейсмическом процессе требуют радикального изменения методов лабораторного сейсмического эксперимента. Не вдаваясь в подробности, которые могут быть разработаны только при выполнении самих экспериментов, остановимся на важнейших условиях. Опыты должны ставиться так, чтобы образец, разрушаясь, не разваливался. Этого можно добиться, либо помещая его в прочную обойму, либо прикладывая усилие к малой части поверхности образца очень большого размера. Можно сказать, что изучение должно начинаться именно тогда, когда образец уже расчленен трещинами.Если, например, изучается образец (уже раздавленный) заключенный в обойму, то, последовательно изменяя нагружение, надо следить за акустическими, электромагнитными и др. эффектами во времени. Возможно, исследовать влияние поровой жидкости при постоянном нагружении и т.д. и т.п. В этих случаях мы имеем дело со средой, структура которой сформировалась в процессе разрушения сплошного образца.
         Возможен также другой подход. В обойму закладывается предварительно раздробленный материал. В этом случае, объектом изучения является процесс консолидации (уплотнения) материала и его поведение на последующих стадиях нагружения (деформирования); разрушение, повторная консолидация и т.д.В качестве примера экспериментов по первому варианту предлагаем результаты исследований, проведенных в Обсерватории Борок лабораторией 512 ИФЗ АН на управляемом прессе. В бетонном блоке с размерами 30*20*10 см плексигласовыми пластинами имитировалось часто встречаемая в природе структура сочленения кулис глубинного разлома (вариант тектонической перемычки) .
          Эксперименты проводились в режиме жесткого одно-двуосного нагружения с постоянной скоростью деформации 10-6 степени сек –1. Каждую секунду фиксировались: величина общей нагрузки (F), сближение пунсонов пресса (Cont.) величина прямо пропорциональная интегральной деформации модели; акустическая эмиссия, смещение берегов имиторованых трещин и локальные деформации в десяти точках модели.
         В процессе систематического накопления интегральной деформации бетонный блок за счет роста хвостовых трещин отрыва растрескивался как минимум на четыре одномасштабные части, что
-7-
контролировалось излучением акустической эмиссии. Как было установлено в эксперименте, и в закритическом состоянии модель (агрегат блоков) излучала акустические импульсы, основной особенностью которых является их регулярная повторяемость . Период повторяемости импульсов в серии экспериментов составлял от 40 до 120 сек. И явно зависел от заданной скорости интегральной деформации. Каждое возникновение импульса сопровождалось скачкообразным смещением берегов имитированных трещин, величины которого в пересчете на деформацию составляли 10-4 степени. Поведение кривых---- и ---- свидетельствует, что перед излучением импульса сопротивление среды резко возрастает. В процессе излучения происходит частичная потеря устойчивости,что подтверждается и скачками деформаций, а затем идет сложный процесс восстановления несущей способности агрегата блокой.Отличие экспериментов при одноосном нагружении заключается в том, что квазипериодическое акустическое излучение возникает раньше, чем при двуосном нагружении, т.е. уже на стадии упругопластического нагружения (Рис.2).Оценка энергии акустических импульсов по методике С.Д.Виноградова 5 дала результат 1.0-10.0 эрг. По формуле М.А.Садовского периоды повторяемости импульсов должны быть в пределах 45-100 сек.,что соответствует данным эксперимента.Следовательно, можно предположить, что зарегистрированное явление находится в общем, ряду свойств блочной среды.
В земных условиях по геологическим и инструментальным данным порядок скорости деформирования земной коры оценивается как 10-6 степени год-1. Т.к. в эксперименте мы задавали скорость 10-6 степени сек-1, то в первом приближении можно считать, что секунда в эксперименте эквивалентна году в природных условиях, т.е. акустические импульсы являются аналогами землетрясений с магнитудами 7 и выше, для которых периоды повторяемости превышают 40 лет. В большинстве случаев после основного импульса наблюдаются серии афтершоков, в редких случаях – форшоки.
         Таким образом, можно сделать вывод о том, что именно такие импульсы,их последовательности и стадии деформирования среды в промежутках между вспышками акустической эмиссии и должны быть объектами лабораторных исследований.Здесь важным может оказаться не только слежение за перечисленными выше параметрами, но и детальная расшифровка высокочастотного акустического фона – аналога сейсмического фона регионов.
1 2 Следующая страница


Природа и проявление геотектонических процессов сейсмическая и вул

Скачать курсовую работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/280



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com