Реферат на тему "Пульсары"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Пульсары

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 52.94 кб.
Язык: русский
Разместил (а): Ленка
1 2 Следующая страница

добавить материал

Пульсары
Введение
На протяжении веков единственным источником сведений о звездах и Вселенной был для астрономов видимый свет. Наблюдая невооруженным глазом или с помощью телескопов, они использовали только очень небольшой интервал волн из всего многообразия электромагнитного излучения, испускаемого небесными телами. Астрономия преобразилась с середины нашего века, когда прогресс физики и техники предоставил ей новые приборы и инструменты, позволяющие вести наблюдения  в самом широком диапазоне волн – от метровых радиоволн до гамма-лучей, где длины волн составляют миллиардные доли миллиметра. Это вызвало нарастающий поток астрономических данных. Фактически все крупнейшие открытия последних лет – результат современного развития новейших областей астрономии, которая стала сейчас всеволновой.  Еще с начала 30-х годов, как только возникли теоретические представления о нейтронных звездах, ожидалось, что они должны проявить себя как космические источники рентгеновского излучения. Эти ожидания оправдались через 40 лет, когда были обнаружены барстеры и удалось доказать, что их излучение рождается на поверхности горячих нейтронных звезд. Но первыми открытыми нейтронными звездами оказались все же не барстеры, а пульсары, проявившие себя - совершенно неожиданно - как источники коротких импульсов радиоизлучения, следующих друг за другом с поразительно строгой периодичностью.
 
Открытие
Летом 1967 г. в Кембриджском университете (Англия) вошел в строй новый радиотелескоп, специально построенный Э. Хьюишем и его сотрудниками для одной наблюдательной задачи - изучения мерцаний космических радиоисточников. Это явление подобно известному всем мерцанию звезд  возникает из-за случайных неоднородностей плотности в среде, сквозь которую проходят электромагнитные волны по пути к нам от источника. Новый радиотелескоп позволял производить наблюдения больших участков неба, а аппаратура для обработки сигналов была способна регистрировать уровень радио-потока через каждые несколько десятых долей секунды.  Эти две особенности их инструмента и позволили кембриджским радиоастрономам открыть нечто совершенно новое - пульсары.
Первые отчетливо различимые серии периодических импульсов  были замечены 28 ноября 1967 г. аспиранткой кембриджской группы Дж. Белл.  Импульсы следовали один за другим с четко выдерживаемым периодом в 1,34 с. Это было совершенно непохоже на обычную хаотическую картину случайных нерегулярных мерцаний. Принимаемые сигналы напоминали скорее помеху земного происхождения. Например, системы зажигания в проезжающих мимо автомобилях. Но это и другие простые объяснения вскоре пришлось оставить. Были исключены и сигналы самолетов или космических аппаратов. Затем, когда появились основания полагать, что импульсы имеют космическое происхождение, возникло предположение о внеземной цивилизации, посылающей на Землю свои сигналы. Предпринимались серьезные попытки распознать какой-либо код в принимаемых импульсах. Это оказалось невозможным, хотя, как рассказывают, к делу были привлечены самые квалифицированные специалисты. К тому же вскоре обнаружили еще три  подобных пульсирующих радиоисточника. Становилось очевидным, что источники излучения являются естественными небесными телами.
Первая публикация кембриджской группы появилась в феврале 1968 г., и уже в ней в качестве вероятных кандидатов на роль источников пульсирующего излучения упоминаются нейтронные звезды. Периодичность радиосигнала связывается с быстрым вращением нейтронной звезды. Источник вращается как фонарь маяка, и это создает прерывистость видимого излучения, приходящего к нам отдельными импульсами. Открытие пульсаров отмечено Нобелевской премией по физике в 1978 г.
Интерпретация: нейтронные звезды
В астрономии известно немало звезд, блеск которых непрерывно меняется, то возрастая, то падая. Имеются звезды, их называют цефеидами (по первой из них, обнаруженной в созвездии Цефея), со строго периодическими вариациями блеска. Усиление и ослабление яркости происходит у разных звезд этого класса с периодами от нескольких дней до года. Но до пульсаров никогда еще не встречались звезды со столь коротким периодом, как у первого «кембриджского» пульсара.
Вслед за ним в очень короткое время было открыто несколько десятков пульсаров, и периоды некоторых из них были еще короче. Так, период пульсара, обнаруженного в 1968 г. в центре Крабовидной туманности, составлял 0,033 с. Сейчас известно около четырех сотен пульсаров. Подавляющее их большинство—до 90%— имеет периоды в пределах от 0.3 до 3 с, так что типичным периодом пульсаров можно считать период в 1 с. Но особенно интересны пульсары-рекордсмены, период которых меньше типичного. Рекорд пульсара Крабовидной туманности продержался почти полтора десятилетия. В конце 1982 г. в созвездии Лисички был обнаружен пульсар с периодом 0,00155 с, т. е. 1,55 мс. Вращение с таким поразительно коротким периодом
означает 642 об/с. Очень короткие периоды пульсаров послужили первым и самым веским аргументом в пользу интерпретации этих объектов как вращающихся нейтронных звезд. Звезда со столь быстрым вращением должна быть исключительно плотной. Действительно, само ее существование возможно лишь при условии, что центробежные силы, связанные с вращением, меньше сил тяготения, связывающих вещество звезды. Центробежные силы не могут разорвать звезду, если центробежное ускорение на экваторе меньше ускорения силы тяжести

Здесь M, R — масса и радиус звезды, Q — угловая частота ее вращения, G — гравитационная постоянная. Из неравенства для ускорений

следует неравенство для средней плотности звезды
Столь компактными, сжатыми до такой высокой степени могут быть лишь нейтронные звезды: их плотность действительно близка к ядерной. Этот вывод подтверждается всей пятнадцатилетней историей изучения пульсаров.

Рентгеновские пульсары

Рентгеновские пульсары — это тесные двойные системы, в которых одна из звезд является нейтронной, а другая — яркой звездой-гигантом. Известно около двух десятков  этих объектов. Первые два рентгеновских пульсара — в созвездии Геркулеса и в созвездий Центавра — открыты в 1972 г. с помощью американского исследовательского спутница «Ухуру». Пульсар в Геркулесе посылает импульсы с периодом 1,24 с. Это период вращения нейтронной звезды. В системе имеется еще один период — нейтронная звезда и ее компаньон совершают обращение вокруг их общего центра тяжести с периодом 1,7 дня. Орбитальный период был определен в этом случае благодаря тому (случайному) обстоятельству, что «обычная» звезда при своем орбитальном движении регулярно оказывается на луче зрения, соединяющем нас и нейтронную звезду, и потому она заслоняет на время рентгеновский источник. Это возможно, очевидно, тогда, когда плоскость звездных орбит составляет лишь небольшой угол с лучом зрения. Рентгеновское излучение прекращается приблизительно на 6 часов, потом снова появляется, и так каждые 1,7 дня.
Длительные наблюдения позволили установить еще один - третий - период рентгеновского пульсара в Геркулесе: этот период составляет  35 дней, из которых II дней источник светит, а 24 дня нет. Причина этого  явления остается пока неизвестной. Пульсар в созвездии Центавра имеет  период пульсаций 4,8 с . Период орбитального движения составляет 2,087  дня—он тоже найден по рентгеновским затмениям. Долгопериодических  изменений, подобных 35-дневному периоду пульсара в созвездии Геркулеса у  этого пульсара не находят. Компаньоном нейтронной звезды в двойной системе  этого пульсара является яркая видимая звезда-гигант с массой 10-20 Солнц. В  большинстве случаев компаньоном нейтронной звезды в рентгеновских  пульсарах является яркая голубая звезда-гигант. Этим они отличаются от  барстеров, которые содержат слабые звезды-карлики. Но как и в барстерах, в  этих системах возможно перетекание вещества от обычной звезды к  нейтронной звезде, и их излучение тоже возникает благодаря нагреву  поверхности нейтронной звезды потоком аккрецируемого вещества. Это тот же  физический механизм излучения, что и в случае фонового (не вспышечного)  излучения барстера. У некоторых из рентгеновских пульсаров вещество
перетекает к нейтронной звезде в виде струи (как в барстерах). В большинстве  же случаев звезда-гигант теряет вещество в виде звездного ветра -  исходящего от ее поверхности во все стороны потока плазмы, ионизированного  газа. Часть плазмы звездного ветра попадает  в окрестности нейтронной звезды, в зону преобладания ее тяготения, где и  захватывается ею.
Однако при приближении к поверхности нейтронной звезды заряженные  частицы плазмы начинают испытывать воздействие еще одного силового поля  магнитного поля нейтронной звезды-пульсара. Магнитное поле способно  перестроить аккреционный поток, сделать его несферически-симметричным, а направленным. Как мы сейчас увидим, из-за этого и возникает эффект пульсаций излучения, эффект маяка.
По своей структуре, т. е. по геометрии силовых линий, магнитное поле пульсара похоже, как можно ожидать, на магнитное поле Земли или Солнца: у него имеются два полюса, из которых в разные стороны расходятся силовые линии. Такое поле называют дипольным.
Вещество, аккрецируемое нейтронной звездой, - это звездный ветер, оно ионизовано, и поэтому взаимодействует при своем движении с ее магнитным полем. Известно, что движение заряженных частиц поперек силовых линий поля затруднено, а движение вдоль силовых линий происходит беспрепятственно. По этой причине аккрецируемое вещество движется вблизи нейтронной звезды практически по силовым линиям ее магнитного поля. Магнитное поле нейтронной звезды как бы создает воронки у ее магнитных полюсов, и в них направляется аккреционный поток. На такую возможность указали еще в 1970 г. советские астрофизики Г. С. Бисноватый-Коганта. А. М. Фридман. Благодаря этому нагрев поверхности нейтронной звезды оказывается неравномерным: у полюсов температура значительно выше, чем на всей остальной поверхности. Горячие пятна у полюсов имеют, согласно расчетам, площадь около одного квадратного километра; они и создают главным образом излучение звезды - ведь светимость очень чувствительна к температуре — она пропорциональна температуре в четвертой степени.
Как и у Земли, магнитная ось нейтронной звезды наклонена к ее оси вращения. Из-за этого возникает эффект маяка: яркое пятно то видно, то не видно наблюдателю. Излучение быстро вращающейся нейтронной звезды представляется наблюдателю прерывистым, пульсирующим. Этот эффект был предсказан теоретически советским астрофизиком В. Ф. Шварцманом за несколько лет до открытия рентгеновских пульсаров. На самом деле излучение горячего пятна происходит, конечно, непрерывно, но оно не равномерно по направлениям, не изотропно, и рентгеновские лучи от него не направлены все время на нас, их пучок вращается в пространстве вокруг оси вращения нейтронной звезды, пробегая по Земле один раз за период.
От рентгеновских пульсаров никогда не наблюдали вспышек, подобных вспышкам барстеров. С другой стороны, от барстеров никогда не наблюдали регулярных пульсаций. Почему же барстеры не пульсируют, а пульсары не вспыхивают? Все дело, вероятно, в том, что магнитное поле нейтронных звезд в барстерах заметно слабее, чем в пульсарах, и потому оно не влияет сколько-нибудь заметно на динамику аккреции, допуская более или менее равномерный прогрев всей поверхности нейтронной звезды. Ее вращение, которое может быть столь же быстрым, как и у пульсаров, не сказывается на рентгеновском потоке так как этот поток изотропен. С другой стороны, предполагают, что поле магнитной индукцией
способно как то - хотя, правда, и не вполне ясно пока, как именно, - подавлять термоядерные взрывы в приполярных зонах нейтронных звезд. Различие в магнитном поле связано, вероятно, с различием возраста барстеров и пульсаров. О возрасте двойной системы можно судить по обычной звезде-компаньону.  Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты; в барстерах же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды лет: первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры - это старые системы, в которых магнитное поле успело со временем в какой-то степени ослабнуть, а пульсары - это относительно молодые системы и потому магнитные поля в них. сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а, пульсарам еще предстоит вспыхивать в будущем.            
Известно, что самые молодые и яркие звезды Галактики находятся в ее диске, вблизи галактической плоскости. Естественно поэтому ожидать, что и рентгеновские пульсары с их яркими звездами-гигантами располагаются преимущественно у галактической плоскости. Их общее распределение по небесной сфере должно отличаться от распределения барстеров, старых объектов, которые - как и все старые звезды Галактики - концентрируются не к ее плоскости, а к галактическому центру. Наблюдения подтверждают эти соображения: рентгеновские пульсары действительно находятся в диске Галактики, в сравнительно узком слое по обе стороны галактической плоскости. Такое же распределение на небе обнаруживают и пульсары, излучающие радиоимпульсы, - радиопульсары.
Радиопульсары
Распределение радиопульсаров на небесной сфере позволяет заключить прежде всего, что эти источники принадлежат нашей Галактике: они очевидным образом концентрируются к ее плоскости служащей, экватором галактической координатной сетки. Объекты,  которые никак не связаны о галактикой, никогда не показали бы никакой, преимущественной ориентации такого рода. Распределение по направлениям говорит в этом случае о реальном пространственном расположении источников: такая картина может возникнуть лишь тогда, когда источники находятся в диске Галактики. Некоторые из них лежат заметно выше или ниже экватора; но они тоже расположены в диске, около плоскости Галактики, только ближе к нам, чем большинство остальных пульсаров. Ведь вместе с Солнцем мы находимся почти точно в галактической плоскости, и потому направление от нас на близкие объекты внутри хотя бы и узкого слоя может быть, вообще говоря, любым.  Близких пульсаров сравнительно мало и они не затемняют общую картину. Если радиопульсары располагаются вблизи галактической плоскости, среди самых молодых звезд Галактики, то разумно полагать, что и сами они являются молодыми.  Об одном из них, пульсаре Крабовидной туманности, определенно известно, что он существует всего около тысячи лет - это остаток вспышки сверхновой 1054 года; его возраст значительно меньше времени жизни ярких звезд-гигантов, - 10 миллионов лет, не говоря уже о звездах-карликах, средний возраст которых еще в 1000 раз больше. Строгая периодичность следования импульсов, расположение в плоскости Галактики и молодость - все это сближает радиопульсары с рентгеновскими пульсарами.  Но во многих других отношениях они резко отличаются друг от друга. Дело не только в том, что одни испускают радиоволны, а другие рентгеновские лучи. Важнее всего то, что радиопульсары - это одиночные, а не двойные звезды. Известно всего три радиопульсара, имеющих звезду-компаньона. У всех остальных, а их более трехсот пятидесяти, никаких признаков двойственности не замечается. Отсюда немедленно следует, что физика радиопульсаров должна быть совсем иной, чем у барстеров или рентгеновских пульсаров. Принципиально иным должен быть источник их энергии — это во всяком случае не аккреция. Другой важнейший факт: спектр излучения радиопульсаров очень далек от какого-либо подобия универсальному чернотельному спектру, который характерен для излучения нагретых тел. Это означает, что излучение радиопульсаров никак не связано с нагревом нейтронной звезды, с температурой, с тепловыми процессами на ее поверхности. Излучение электромагнитных волн, не связанное с нагревом тела, называют нетепловым. Такое излучение не редкость в астрофизике, физике и технике. Вот простой пример. Антенна радиостанции или телецентра - это проводник определенного размера и формы. В нем имеются свободные электроны, которые под действием специального генератора совершают согласованные движения вдоль проводника туда и обратно с заданной частотой. Так как электроны колеблются  «в унисон», то и излучают они согласованно: все излучаемые в пространство электромагнитные волны имеют одинаковую частоту - частоту колебаний электронов. Так что спектр излучения антенны содержит только одну частоту или длину волны. Сведения о спектре излучения радиопульсаров удалось получить прежде  всего благодаря наблюдениям самого яркого из них - пульсара Крабовидной туманности. Замечательно, что его излучение регистрируется во всех диапазонах электромагнитных волн - от радиоволн до гамма-лучей. Больше всего энергии он испускает именно в области гамма-лучей (так что пульсар вполне заслуживает названия гамма-пульсара);
1 2 Следующая страница


Пульсары

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/78



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com