Реферат на тему "Система автоматизированного анализа пространственной структуры изображений Подсистема центроидной релаксации"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Диплом на тему Система автоматизированного анализа пространственной структуры изображений Подсистема центроидной релаксации

скачать

Найти другие подобные рефераты.

Диплом *
Размер: 0.85 мб.
Язык: русский
Разместил (а): Дмитрий
Предыдущая страница 1 2 3 4 5 6 7 8 9 Следующая страница

добавить материал

1.4.2. Описание системы программного обеспечения
Для реализации и функционирования проекта необходимо следующее общесистемное программное обеспечение: ОС Windows XP, в основе которой лежит ядро, характеризуемое 32-разрядной вычислительной архитектурой и полностью защищенной моделью памяти, что обеспечивает надежную вычислительную среду.
Разработка системы ААПСИ и ее подсистем будет вестись с использованием сред для разработки приложений Borland C++ Builder 6 и Microsoft Visual Studio C++. Среды разработки включают в себя высокопроизводительный 32-битный компилятор, что позволяет оптимизировать создаваемый код. В состав каждой среды включен обширный набор средств, которые повышают производительность труда программистов и сокращают продолжительность цикла разработки. Удобство разработки и эффективность созданных в данных средах разработки программ делают их оптимальным выбором для построения исследовательской системы, какой является система ААПСИ.
2.                РАЗРАБОТКА ЗАДАЧИ «ПОДСИСТЕМА ЦЕНТРОИДНОЙ РЕЛАКСАЦИИ»
2.1.         Описание постановки задачи
2.1.1. Характеристика задачи
Задача «Центроидная релаксация» входит в состав системы «Автоматизированный анализ пространственной структуры изображений» и предназначена для автоматизации процесса анализа геометрических характеристик структурных элементов изображения. Целесообразность автоматизации задачи обусловлена необходимостью изучения выделенных структурных элементов изображения. Изучению сопутствует процесс автоматизированных вычислений, который сложно и долго выполнять без ЭВМ, так как объем рассматриваемых данных достаточно велик. Дополнительно в задаче существует необходимость  выполнения некоторых преобразований изображения для дальнейшего использования в системе ААПСИ.
Задача включает в себя следующие подзадачи:
–        построение фильтра для исследования изображения;
–        вычисление центра масс для каждого пиксела изображения;
–        вычисление кривизны структурных элементов;
Каждая задача описывается отдельным алгоритмом.
2.1.2. Входная информация
Входной информацией для задачи является файл *.fld полученный после обработки исходного изображения подсистемой центроидной фильтрации.
Формат входного файла приведен в приложении 3.
2.1.3. Выходная информация
Выходной информацией задачи является файл *.rlx, содержащий структурное описание изображения. Создаваемый файл сохраняется в тот же каталог, откуда был открыт входной файл.
 Формат выходного файла описан в приложении 3.
2.1.4. Математическая постановка задачи
Математическое описание построения кольцевого фильтра
Кольцевой фильтр необходим для исследования изображения с помощью локального метода. Именно кольцевой фильтр позволяет наиболее верно вычислить кривизну структурных элементов изображения.
Алгоритм вычисления точек кольцевого фильтра основан на соотношении сторон прямоугольного треугольника.
Ox
Oy
x
y
r
R
P
 

Рис. 2.1
Исходя из рисунка, точка P(x,y) – является точкой фильтра, если выполняется следующее условие:
                                          (2.1) 
Математическое описание  вычисления центра масс
Под “массой пиксела” в данной работе понимается  значение цвета пиксела/9/. Для вычисления центра масс относительно текущей точки,  необходимо вычислить сумму “масс” пикселей попавших в фильтр, центр которого находится в текущей точке.
 ,                                                       (2.2)
где N – количество пикселов в фильтре,
       p(i, j) – “вес” пиксела.
Рассчитываются вес пикселей по оси Ox:
 ,                                                    (2.3)
и вес по оси Oy:
 ,                                             (2.4)
Смещение по оси Оx  к центру “тяжести” пикселей,  относительно текущей точки:
 ,                                                      (2.5)
Смещение по оси Оy  к центру “тяжести” пикселей,  относительно текущей точки:
,                                                       (2.6)
Координаты центра тяжести P(i, j):
    ,                                                     (2.7)
    ,                                                     (2.8)
где  u,v – координаты центра фильтра.
Математическое описание алгоритма вычисления кривизны
Кривизна вычисляется для точки, принадлежащей линии. Поэтому необходимое условие выполнения алгоритма – совпадение центра фильтра и точки на линии. Геометрическое расположение фильтра и линии показано на рис. 2.2
Вычисление кривизны
P1
 
 SHAPE  \* MERGEFORMAT
R
l
r
h
h
R
-
R
r
h
h
R
-
R
r
h
h
R
-
Cf
M
P2
O

Cf – центр фильтра; P1,P2 – точки линии, попавшие в фильтр;
r – радиус фильтра; h – смещение центра масс от центра фильтра;
l - расстояние от центра масс до точки пересечения линии рисунка и фильтра; M – центр масс; О – центр окружности на изображении;
R – радиус окружности на изображении;
Рис.2.2
Рассмотрим треугольник ΔСfMP2 .Из соотношения гипотенузы и катетов в прямоугольных треугольниках, следует:
                                                                                              (2.9)
Из прямоугольного треугольника ΔOMP2  следует:
                                                                                     (2.10)
Из (2.9) выразим l2 , получим:
                                                                                              (2.11)
Подставив в (2.10), получим:
                                                                            (2.12)
Раскроем  скобки:
                                                                                 (2.13)
Для получения h, сделаем несколько преобразований:
                                              ,                                                   (2.14)
                                               ,                                                     (2.15)
                                                ,                                                    (2.16)
Нормируем h по r :
                                                                                              (2.17)
Дифференцируем (2.17) по r /10/ :
                                                                                          (2.18)
Из выше приведенной формулы видно, что кривизна обратно пропорциональна радиусу исследуемой линии. Так как линии могут быть различны по виду, не одинаковы на отдельных участках, то, соответственно, и кривизна этих участков будет различаться. К тому же при изменении радиуса кольцевого фильтра наблюдается изменение вычисленной кривизны для одной и той же точки линии. Рассмотрим различные виды линий.
Окружность. При обработке фильтрами различных радиусов (рис 2.3), кривизна остается постоянной (рис.2.4), т.к.  радиус окружности – величина постоянная.

Окружность


a) обработка фильтром большого  радиуса;
б) обработка фильтром маленького  радиуса;
Рис.2.3
График зависимости кривизны от радиуса фильтра для окружности
 SHAPE  \* MERGEFORMAT
Радиус фильтра
Кривизна

Рис.2.4
Кривая. При обработке фильтрами различных радиусов (рис 2.5), кривизна постоянно меняется (рис.2.6), т.к.  изменяется радиус окружности, которую можно вписать между центром фильтра и точками линии, попавшими в фильтр.
Угол. При обработке фильтрами различных радиусов (рис 2.7), кривизна меняется пропорционально изменению радиуса фильтра (рис.2.8), т.к. пропорционально изменяется радиус окружности, которую можно вписать между центром фильтра и точками линии, попавшими в фильтр.
Кривая


a) обработка фильтром большого  радиуса;
б) обработка фильтром маленького  радиуса;
Рис.2.5
График зависимости кривизны от радиуса фильтра для кривой
Радиус фильтра
Кривизна
 

Рис.2.6
Угол


a) обработка фильтром большого  радиуса;
б) обработка фильтром маленького  радиуса;
Рис.2.7
Радиус фильтра
Кривизна
График зависимости кривизны от радиуса фильтра для угла
Рис.2.8
2.2.         Описание алгоритма построения кольцевого фильтра
2.2.1. Назначение и характеристика алгоритма
Алгоритм описывает метод вычисления координат кольцевого фильтра. Математическое описание  алгоритма приведено в подразделе 2.1.4.
2.2.2. Используемая информация
В алгоритме используются значения внешнего и внутреннего радиуса кольца.
2.2.3. Результаты решения
В результате реализации алгоритма формируется массив координат точек кольцевого фильтра. При этом центр координат совпадает с центром фильтра.
2.2.4. Алгоритм решения
1.                i=-MASK_SIZE;
2.                j=MASK_SIZE;
3.                s=sqrt(i*i+j*j);
4.                Если ((s<=outsideR)&&(s>=insideR)), то к.п.5, иначе переход к п.7
5.                FltArr[FltArr_index].x=i;
6.                FltArr[FltArr_index++].y=j;
7.                j--;
8.                Если j>=-MASK_SIZE, то переход к п.3
9.                i++;
10.           Если i<=MASK_SIZE, то переход к п.2
11.           Конец

2.2.5. Список условных обозначений
Условные обозначения, используемые в описании алгоритма, приведены в табл. 2.1.
Таблица 2.1
Список условных обозначений
Обозначение
Расшифровка
MASK_SIZE
Радиус максимального фильтра в пикселях
i, j
Координаты текущего пиксела
FltArr
Массив координат
FltArr_index
Индекс текущего элемента в массиве FltArr
s
Расстояние от центра фильтра до текущего пиксела
2.3.         Описание алгоритма вычисления центра масс
2.3.1. Назначение и характеристика алгоритма
Алгоритм описывает процесс вычисления центра масс относительно центра фильтра. Математическое описание  алгоритма приведено в подразделе 2.1.4. В результате решения алгоритма вычисляются координаты центра масс.  
2.3.2. Алгоритм решения
1.                M=0,Wx=0,Wy=0;
2.                Cx=0,Cy=0; k=0;
3.                Если (k>=FltArr_index), то переход  к п.8
4.                M=M+ImArr[CF.x+FltArr[k].x][CF.y+FltArr[k].y:
5.                Wx=Wx+
              +(CF.x+FltArr[k].x)*ImArr[CF.x+FltArr[k].x][CF.y+FltArr[k].y];
6.                Wy=Wy+
              +(CF.y+FltArr[k].y)*ImArr[CF.x+FltArr[k].x][CF.y+FltArr[k].y];
7.                k++; переход к п.3
8.                M=M/255;
9.                Wx=Wx/255;
10.           Wy=Wy/255;
11.            Если (M==0), то переход к п.14
12.           Cx=Wx/M;
13.            Cy=Wy/M;
14.            Конец
2.3.3. Список условных обозначений
Предыдущая страница 1 2 3 4 5 6 7 8 9 Следующая страница


Система автоматизированного анализа пространственной структуры изображений Подсистема центроидной релаксации

Скачать дипломную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=14919&часть=3



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com