Реферат на тему "Принципы организации государственной статистики"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Шпаргалка на тему Принципы организации государственной статистики

скачать

Найти другие подобные рефераты.

Шпаргалка *
Размер: 282.98 кб.
Язык: русский
Разместил (а): LIttlebig
Предыдущая страница 1 2 3 4 Следующая страница

добавить материал

При m = -1  — средняя гармоническая; при т = 0    — средняя геометрическая хг ; при т = 1     — средняя арифметическая хар ; при т = 2    — средняя квадратическая  хквадр; при т = 3    — средняя кубическая хкуб.
При использовании одних и тех же исходных данных, чем больше т в формуле, тем больше значение средней величины:
Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется в стати­стике правилом мажорантности средних.
12. Средняя арифметическая простая и взвешенная. Условия
применения. Вычисление средней арифметической по данным
интервального ряда
Сред­няя арифметическая применяется в тех случаях, когда объ­ем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общест­венных явлений характерна аддитивность (суммарность) объе­мов варьирующего признака, этим определяется область при­менения средней арифметической и объясняется ее распро­страненность как обобщающего показателя.
Средняя арифметическая простая равна простой сумме от­дельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеют­ся несгруппированные индивидуальные значения признака):

Средняя из вариантов, которые повторяются различное чис­ло раз, или, как говорят, имеют различный вес, называется взвешенной.

Cредняя гармоническая — сред­няя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической сред­ней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.


13. Средняя гармоническая. Методика расчета, формулы и условия
применения средней гармонической
Cредняя гармоническая — сред­няя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической сред­ней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической.


Таким образом, средняя гармоническая применяется тогда, когда неизвестны действительные веса f, а известно w = xf, т.е. в тех случаях, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, когда суммированию подлежат не сами варианты, а обратные им величины.
В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется средняя гармоническая простая, ис­числяемая по формуле:

14. Средние структурные величины, методика их расчета.
Cтруктурные сред­ние применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.
Мода — значение случайной величины, встречающее­ся с наибольшей вероятностью в дискретном вариационном ря­ду — вариант, имеющий наибольшую частоту.

Медиана Ме — это вариант, который находится в середи­не вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части — со значениями признака меньше медиа­ны и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое ра-ходится в середине упорядоченного ряда. В ранжированных ря­дах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы.

15. Вариация и задачи ее статистического изучения. Основные
показатели вариации, их достоинства и значение.
Вариация - колеблемость, многообразие, изменяемость величины признака у отдельных единиц совокупности.
Вариация даёт возможность оценить степень воздействия на данный признак других варьирующих признаков, установить, например, какие факторы и в какой степени влияют на смертность населения, финансовое положение предприятий, урожайность пшени­цы и т. п.
Вариация существует в пространстве и во времени. Под ва­риацией в пространстве понимается колеблемость значений признака по отдельным территориям.
Объективно существует также вариация во времени. Под ней подразумевают изменение значений признака в различные пери­оды (или моменты) времени. Так, со временем изменяются сред­няя продолжительность жизни, срок службы товаров длительно­го пользования, мнения людей и т. д.
Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся размах вариации, сред­нее линейное отклонение, дисперсия и среднее квадратическое отклонение. Вторая группа показателей вычисляется как отно­шение абсолютных показателей вариации к средней арифмети­ческой (или медиане). Относительными показателями вариации являются коэффициенты осцилляции, вариации, относительное линейное отклонение и др.
Самым простым абсолютным показателем является размах вариации (R).
Размах показывает, насколько велико различие между единица­ми совокупности, имеющими самое маленькое и самое большое значение признака.

Знание подобного рода величин необходимо в практической и хозяйственной деятельности, а также в научных исследованиях.
Например, размах вариации применяется при контроле каче­ства продукции для определения влияния систематически дей­ствующих причин на производственный процесс. Для этого от­бирают через определенные промежутки времени несколько деталей и производят их измерение. Рассчитав по данным этих выборок показатели размаха вариации, на основе сопоставления результатов вычислений судят об устойчивости режима произ­водственного процесса.
В учебной литературе по статистике обычно указывается, что размах имеет существенный недостаток. Его величина всецело зависит от крайних значений признака, и он не учитывает всех изменений варьирующего признака в пределах совокупности.
Этот упрек в адрес размаха вариации является не совсем вер­ным. Какой же это недостаток, когда именно в этом заключается суть показателя.
К недостаткам размаха вариации можно от­нести то обстоятельство, что очень низкое и очень высокое зна­чения признака по сравнению с основной массой его значений в совокупности могут быть обусловлены какими-либо сугубо случайными обстоятельствами (т. е. эти значения являются ано­мальными в совокупности).
Условия существования и развития отдельных еди­ниц совокупности в определенной степени различны, что сказы­вается и на различии значений у них взятого нами признака. Средняя величина отражает эти средние условия.
Среднее линейное отклонение дает обобщен­ную характеристику степени колеблемости признака в совокуп­ности. Однако при его исчислении приходится допускать некор­ректные с точки зрения математики действия, нарушать законы алгебры, что побудило математиков и статистиков искать иной способ оценки вариации для того, чтобы иметь дело только с положительными величинами. Самый простой выход - возвести все отклонения во вторую степень.

Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических иссле­дованиях, а также в технике, биологии и других отраслях зна­ний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства.
Дисперсия есть средняя величина квадратов отклонений.
Среднее квадратическое отклонение - это обобщающая харак­теристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в мет­рах, тоннах, рублях, процентах и т. д.).
16. Понятие вариации и ее значение. Статистическое изучение
вариации признаков.
Вариация - колеблемость, многообразие, изменяемость величины признака у отдельных единиц совокупности.
Вариация порождается комплексом условий, действующих на совокупность и ее единицы. Например, вариация оценок на эк­замене в вузе порождается, в частности, различными способностями студентов, временем, затрачиваемым ими на самостоятель­ную работу, различием социально-бытовых условий и т. д. Именно вариация и предопределяет необходимость статистики. Если бы все студенты получали одинаковые оценки или, например, семьи имели одинаковые доходы, то необходимость в статистическом исследовании отпала бы.
Исследование вариации в статистике имеет важное значение. Вариация даёт возможность оценить степень воздействия на данный признак других варьирующих признаков, установить, например, какие факторы и в какой степени влияют на смертность населения, финансовое положение предприятий, урожайность пшени­цы и т. п. Определение вариации необходимо при организации выборочного наблюдения, построении статистических моделей разработке материалов экспертных опросов и во многих других случаях.
Вариация существует в пространстве и во времени. Под ва­риацией в пространстве понимается колеблемость значений признака по отдельным территориям.
Объективно существует также вариация во времени. Под ней подразумевают изменение значений признака в различные пери­оды (или моменты) времени. Так, со временем изменяются сред­няя продолжительность жизни, срок службы товаров длительно­го пользования, мнения людей и т. д.
По степени вариации можно судить о многих сторонах про­цесса развития изучаемых явлений, в частности об однородно­сти совокупности, устойчивости индивидуальных значений при­знака, типичности средней, о взаимосвязи между признаками одного и того же явления и признаками разных явлений. Ста­тистические показатели, характеризующие вариацию, широко применяются в практической деятельности, например для оцен­ки ритмичности работы промышленных предприятий, контро­ля за ходом других производственных процессов, устойчивости урожайности сельскохозяйственных культур тех или иных сор­тов или одного и того же сорта в определенных почвенно-климатических условиях. На основе показателей вариации в стати­стике разрабатываются другие показатели и методы изучения явлений и процессов общественной жизни - показатели тесно­ты связи между явлениями и их признаками, показатели оцен­ки точности выборочного наблюдения.
17. Абсолютные и относительные показатели вариации, сущность и
значение, методика расчета
К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия и среднее квадратическое отклонение.
Относительные показатели вариации - это коэффициенты осцил­ляции, вариации, относительное линейное отклонение и др.
Размах вариации - разность между наибольшим и наименьшим значениями варьирующего признака.
Среднее линейное отклонение - средняя арифметическая из абсо­лютных значений отклонений вариант признака от их средней.
Дисперсия - средний квадрат отклонений индивидуальных значе­ний признака от их средней величины.
Среднее квадратическое отклонение рассчитывается как корень квадратный из дисперсии. Среднее квадратическое отклонение, диспер­сия и среднее линейное отклонение могут определяться по формулам простой и взвешенной (в зависимости от исходных данных).
Коэффициент осцилляции - процентное отношение размаха вари­ации к средней величине признака.
Самым простым абсолютным показателем является размах вариации (R).
Размах показывает, насколько велико различие между единица­ми совокупности, имеющими самое маленькое и самое большое значение признака.

Размах вариации применяется при контроле каче­ства продукции для определения влияния систематически дей­ствующих причин на производственный процесс. Для этого от­бирают через определенные промежутки времени несколько деталей и производят их измерение. Рассчитав по данным этих выборок показатели размаха вариации, на основе сопоставления результатов вычислений судят об устойчивости режима произ­водственного процесса.
В учебной литературе по статистике обычно указывается, что размах имеет существенный недостаток. Его величина всецело зависит от крайних значений признака, и он не учитывает всех изменений варьирующего признака в пределах совокупности.
Этот упрек в адрес размаха вариации является не совсем вер­ным. Какой же это недостаток, когда именно в этом заключается суть показателя.
К недостаткам размаха вариации можно от­нести то обстоятельство, что очень низкое и очень высокое зна­чения признака по сравнению с основной массой его значений в совокупности могут быть обусловлены какими-либо сугубо случайными обстоятельствами (т. е. эти значения являются ано­мальными в совокупности).
Условия существования и развития отдельных еди­ниц совокупности в определенной степени различны, что сказы­вается и на различии значений у них взятого нами признака. Средняя величина отражает эти средние условия.
Среднее линейное отклонение дает обобщен­ную характеристику степени колеблемости признака в совокуп­ности. Однако при его исчислении приходится допускать некор­ректные с точки зрения математики действия, нарушать законы алгебры, что побудило математиков и статистиков искать иной способ оценки вариации для того, чтобы иметь дело только с положительными величинами. Самый простой выход - возвести все отклонения во вторую степень.
Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических иссле­дованиях, а также в технике, биологии и других отраслях зна­ний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства.
Дисперсия есть средняя величина квадратов отклонений.
Среднее квадратическое отклонение - это обобщающая харак­теристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в мет­рах,
Различают следующие относительные показате­ли вариации (V):

Наиболее часто в практических расчетах применяется показа­тель относительной вариации - коэффициент вариации
18. Вариация альтернативного признака. Расчет дисперсии по
разным способам.
Среди множества варьирующих признаков, изучаемых ста­тистикой, существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными. Примером таких признаков яв­ляются: наличие бракованной продукции, ученая степень у пре­подавателя вуза, работа по полученной специальности и т. д. Вариация альтернативного признака количественно прояв­ляется в значении нуля у единиц, которые этим призна­ком не обладают, или единицы у тех, которые данный признак имеют.
Пусть р - доля единиц в совокупности, обладающих данным признаком (р = m/n); q - доля единиц, не обладающих данным признаком, причем р + q = 1. Альтернативный признак принима­ет всего два значения - 0 и 1 с весами соответственно q и р. Исчислим среднее значение альтернативного признака по фор­муле средней арифметической:

Дисперсия альтернативного признака определяется по формуле:

Таким образом, дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы чис­ло. Корень квадратный из этого показателя соответ­ствует среднему квадратическому отклонению альтернативного признака.
Показатели вариации альтернативных признаков широко ис­пользуются в статистике, в частности при проектировании выбо­рочного наблюдения, обработке данных социологических обсле­дований, статистическом контроле качества продукции, в ряде других случаев.
19. Правило сложения дисперсий. Дисперсионный факторный
анализ.
Бывает необходимо проследить количественные изменения признака по группам, на которые разделяется сово­купность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных ви­дов дисперсии.
Выделяют дисперсию общую, межгрупповую и внутригрупповую. Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию:

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгруп­повой дисперсий:
Данное соотношение называют правилом сложения диспер­сий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, появляющей­ся под влиянием всех прочих факторов, и дисперсии, возникаю­щей за счет группировочного признака.
Предыдущая страница 1 2 3 4 Следующая страница


Принципы организации государственной статистики

Скачать шпаргалку бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=14978&часть=3



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com