При m = -1 — средняя гармоническая; при т = 0 — средняя геометрическая хг ; при т = 1 — средняя арифметическая хар ; при т = 2 — средняя квадратическая хквадр; при т = 3 — средняя кубическая хкуб. При использовании одних и тех же исходных данных, чем больше т в формуле, тем больше значение средней величины: Это свойство степенных средних возрастать с повышением показателя степени определяющей функции называется в статистике правилом мажорантности средних. 12. Средняя арифметическая простая и взвешенная. Условия применения. Вычисление средней арифметической по данным интервального ряда Средняя арифметическая применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Для общественных явлений характерна аддитивность (суммарность) объемов варьирующего признака, этим определяется область применения средней арифметической и объясняется ее распространенность как обобщающего показателя. Средняя арифметическая простая равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений (она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака): Средняя из вариантов, которые повторяются различное число раз, или, как говорят, имеют различный вес, называется взвешенной. Cредняя гармоническая — средняя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической средней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической. 13. Средняя гармоническая. Методика расчета, формулы и условия применения средней гармонической Cредняя гармоническая — средняя взвешенная из варьирующих обратных значений признака. Она является преобразованной формой арифметической средней и тождественна ей. Вместо гармонической всегда можно рассчитать среднюю арифметическую, но для этого сначала нужно определить веса отдельных значений признака, скрытые в весах средней гармонической. Таким образом, средняя гармоническая применяется тогда, когда неизвестны действительные веса f, а известно w = xf, т.е. в тех случаях, когда средняя предназначается для расчета сумм слагаемых, обратно пропорциональных величине данного признака, когда суммированию подлежат не сами варианты, а обратные им величины. В тех случаях, когда вес каждого варианта равен единице (индивидуальные значения обратного признака встречаются по одному разу), применяется средняя гармоническая простая, исчисляемая по формуле: 14. Средние структурные величины, методика их расчета. Cтруктурные средние применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана. Мода — значение случайной величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду — вариант, имеющий наибольшую частоту. Медиана Ме — это вариант, который находится в середине вариационного ряда. Медиана делит ряд на две равные (по числу единиц) части — со значениями признака меньше медианы и со значениями признака больше медианы. Чтобы найти медиану, необходимо отыскать значение признака, которое ра-ходится в середине упорядоченного ряда. В ранжированных рядах несгруппированных данных нахождение медианы сводится к отысканию порядкового номера медианы. 15. Вариация и задачи ее статистического изучения. Основные показатели вариации, их достоинства и значение. Вариация - колеблемость, многообразие, изменяемость величины признака у отдельных единиц совокупности. Вариация даёт возможность оценить степень воздействия на данный признак других варьирующих признаков, установить, например, какие факторы и в какой степени влияют на смертность населения, финансовое положение предприятий, урожайность пшеницы и т. п. Вариация существует в пространстве и во времени. Под вариацией в пространстве понимается колеблемость значений признака по отдельным территориям. Объективно существует также вариация во времени. Под ней подразумевают изменение значений признака в различные периоды (или моменты) времени. Так, со временем изменяются средняя продолжительность жизни, срок службы товаров длительного пользования, мнения людей и т. д. Показатели вариации делятся на две группы: абсолютные и относительные. К абсолютным относятся размах вариации, среднее линейное отклонение, дисперсия и среднее квадратическое отклонение. Вторая группа показателей вычисляется как отношение абсолютных показателей вариации к средней арифметической (или медиане). Относительными показателями вариации являются коэффициенты осцилляции, вариации, относительное линейное отклонение и др. Самым простым абсолютным показателем является размах вариации (R). Размах показывает, насколько велико различие между единицами совокупности, имеющими самое маленькое и самое большое значение признака. Знание подобного рода величин необходимо в практической и хозяйственной деятельности, а также в научных исследованиях. Например, размах вариации применяется при контроле качества продукции для определения влияния систематически действующих причин на производственный процесс. Для этого отбирают через определенные промежутки времени несколько деталей и производят их измерение. Рассчитав по данным этих выборок показатели размаха вариации, на основе сопоставления результатов вычислений судят об устойчивости режима производственного процесса. В учебной литературе по статистике обычно указывается, что размах имеет существенный недостаток. Его величина всецело зависит от крайних значений признака, и он не учитывает всех изменений варьирующего признака в пределах совокупности. Этот упрек в адрес размаха вариации является не совсем верным. Какой же это недостаток, когда именно в этом заключается суть показателя. К недостаткам размаха вариации можно отнести то обстоятельство, что очень низкое и очень высокое значения признака по сравнению с основной массой его значений в совокупности могут быть обусловлены какими-либо сугубо случайными обстоятельствами (т. е. эти значения являются аномальными в совокупности). Условия существования и развития отдельных единиц совокупности в определенной степени различны, что сказывается и на различии значений у них взятого нами признака. Средняя величина отражает эти средние условия. Среднее линейное отклонение дает обобщенную характеристику степени колеблемости признака в совокупности. Однако при его исчислении приходится допускать некорректные с точки зрения математики действия, нарушать законы алгебры, что побудило математиков и статистиков искать иной способ оценки вариации для того, чтобы иметь дело только с положительными величинами. Самый простой выход - возвести все отклонения во вторую степень. Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических исследованиях, а также в технике, биологии и других отраслях знаний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства. Дисперсия есть средняя величина квадратов отклонений. Среднее квадратическое отклонение - это обобщающая характеристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в метрах, тоннах, рублях, процентах и т. д.). 16. Понятие вариации и ее значение. Статистическое изучение вариации признаков. Вариация - колеблемость, многообразие, изменяемость величины признака у отдельных единиц совокупности. Вариация порождается комплексом условий, действующих на совокупность и ее единицы. Например, вариация оценок на экзамене в вузе порождается, в частности, различными способностями студентов, временем, затрачиваемым ими на самостоятельную работу, различием социально-бытовых условий и т. д. Именно вариация и предопределяет необходимость статистики. Если бы все студенты получали одинаковые оценки или, например, семьи имели одинаковые доходы, то необходимость в статистическом исследовании отпала бы. Исследование вариации в статистике имеет важное значение. Вариация даёт возможность оценить степень воздействия на данный признак других варьирующих признаков, установить, например, какие факторы и в какой степени влияют на смертность населения, финансовое положение предприятий, урожайность пшеницы и т. п. Определение вариации необходимо при организации выборочного наблюдения, построении статистических моделей разработке материалов экспертных опросов и во многих других случаях. Вариация существует в пространстве и во времени. Под вариацией в пространстве понимается колеблемость значений признака по отдельным территориям. Объективно существует также вариация во времени. Под ней подразумевают изменение значений признака в различные периоды (или моменты) времени. Так, со временем изменяются средняя продолжительность жизни, срок службы товаров длительного пользования, мнения людей и т. д. По степени вариации можно судить о многих сторонах процесса развития изучаемых явлений, в частности об однородности совокупности, устойчивости индивидуальных значений признака, типичности средней, о взаимосвязи между признаками одного и того же явления и признаками разных явлений. Статистические показатели, характеризующие вариацию, широко применяются в практической деятельности, например для оценки ритмичности работы промышленных предприятий, контроля за ходом других производственных процессов, устойчивости урожайности сельскохозяйственных культур тех или иных сортов или одного и того же сорта в определенных почвенно-климатических условиях. На основе показателей вариации в статистике разрабатываются другие показатели и методы изучения явлений и процессов общественной жизни - показатели тесноты связи между явлениями и их признаками, показатели оценки точности выборочного наблюдения. 17. Абсолютные и относительные показатели вариации, сущность и значение, методика расчета К абсолютным показателям вариации относятся размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия и среднее квадратическое отклонение. Относительные показатели вариации - это коэффициенты осцилляции, вариации, относительное линейное отклонение и др. Размах вариации - разность между наибольшим и наименьшим значениями варьирующего признака. Среднее линейное отклонение - средняя арифметическая из абсолютных значений отклонений вариант признака от их средней. Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины. Среднее квадратическое отклонение рассчитывается как корень квадратный из дисперсии. Среднее квадратическое отклонение, дисперсия и среднее линейное отклонение могут определяться по формулам простой и взвешенной (в зависимости от исходных данных). Коэффициент осцилляции - процентное отношение размаха вариации к средней величине признака. Самым простым абсолютным показателем является размах вариации (R). Размах показывает, насколько велико различие между единицами совокупности, имеющими самое маленькое и самое большое значение признака. Размах вариации применяется при контроле качества продукции для определения влияния систематически действующих причин на производственный процесс. Для этого отбирают через определенные промежутки времени несколько деталей и производят их измерение. Рассчитав по данным этих выборок показатели размаха вариации, на основе сопоставления результатов вычислений судят об устойчивости режима производственного процесса. В учебной литературе по статистике обычно указывается, что размах имеет существенный недостаток. Его величина всецело зависит от крайних значений признака, и он не учитывает всех изменений варьирующего признака в пределах совокупности. Этот упрек в адрес размаха вариации является не совсем верным. Какой же это недостаток, когда именно в этом заключается суть показателя. К недостаткам размаха вариации можно отнести то обстоятельство, что очень низкое и очень высокое значения признака по сравнению с основной массой его значений в совокупности могут быть обусловлены какими-либо сугубо случайными обстоятельствами (т. е. эти значения являются аномальными в совокупности). Условия существования и развития отдельных единиц совокупности в определенной степени различны, что сказывается и на различии значений у них взятого нами признака. Средняя величина отражает эти средние условия. Среднее линейное отклонение дает обобщенную характеристику степени колеблемости признака в совокупности. Однако при его исчислении приходится допускать некорректные с точки зрения математики действия, нарушать законы алгебры, что побудило математиков и статистиков искать иной способ оценки вариации для того, чтобы иметь дело только с положительными величинами. Самый простой выход - возвести все отклонения во вторую степень. Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических исследованиях, а также в технике, биологии и других отраслях знаний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства. Дисперсия есть средняя величина квадратов отклонений. Среднее квадратическое отклонение - это обобщающая характеристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в метрах, Различают следующие относительные показатели вариации (V): Наиболее часто в практических расчетах применяется показатель относительной вариации - коэффициент вариации 18. Вариация альтернативного признака. Расчет дисперсии по разным способам. Среди множества варьирующих признаков, изучаемых статистикой, существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными. Примером таких признаков являются: наличие бракованной продукции, ученая степень у преподавателя вуза, работа по полученной специальности и т. д. Вариация альтернативного признака количественно проявляется в значении нуля у единиц, которые этим признаком не обладают, или единицы у тех, которые данный признак имеют. Пусть р - доля единиц в совокупности, обладающих данным признаком (р = m/n); q - доля единиц, не обладающих данным признаком, причем р + q = 1. Альтернативный признак принимает всего два значения - 0 и 1 с весами соответственно q и р. Исчислим среднее значение альтернативного признака по формуле средней арифметической: Дисперсия альтернативного признака определяется по формуле: Таким образом, дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы число. Корень квадратный из этого показателя соответствует среднему квадратическому отклонению альтернативного признака. Показатели вариации альтернативных признаков широко используются в статистике, в частности при проектировании выборочного наблюдения, обработке данных социологических обследований, статистическом контроле качества продукции, в ряде других случаев. 19. Правило сложения дисперсий. Дисперсионный факторный анализ. Бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии. Выделяют дисперсию общую, межгрупповую и внутригрупповую. Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию: Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий: Данное соотношение называют правилом сложения дисперсий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, появляющейся под влиянием всех прочих факторов, и дисперсии, возникающей за счет группировочного признака.
|