Реферат на тему "Разработка источников диффузионного легирования для производства кремниевых солнечных элементов"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Диплом на тему Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

скачать

Найти другие подобные рефераты.

Диплом *
Размер: 1.05 мб.
Язык: русский
Разместил (а): Гречаник В.А.
Предыдущая страница 1 2 3 4 5 6 7 8 9 10 Следующая страница

добавить материал

Типичными акцепторными диффузантами являются борные стекла следующих составов:
-   состав 1 включает 30 % B2O3, 10 % Al2O3, 50 % SiO2 и 10 % BaO;
-   состав 2 включает 13 % B2O3, 2 % Al2O3, 80 % SiO2 и 5 % Na2O.
При изготовлении этих стекол порошкообразные компоненты тщательно перемешивают и засыпают в органический растворитель. Образовавшуюся взвесь наносят кварцевой палочкой или распылителем на поверхность полупроводниковых пластин, которые помещают в термостат при температуре 100°С для удаления органического растворителя. Затем температуру повышают до 1200°С, при которой композиция  плавится и покрывает поверхность полупроводниковой пластины ровным слоем стекла заданного состава [11]. Диффузия алюминия из стеклообразных диффузантов не происходит вследствие сильной связи алюминия с кислородом.
Типичным диффузантом донорной примеси является фосфорно-силикатное стекло следующего состава: 34,9 % P2O5, 25 % Al2O3, 14,7 % SiO2 и 25,4 % Na2O, которое приготовляют  и используют так же, как борное. Кроме того, в качестве диффузанта используют соединение, имеющее состав (P2O5)x∙(CaO)y, из диаграммы состояния которого видно, что оно имеет эвтектику, содержащую 7 – 8 % CaO и плавящуюся при температуре 500°С (рис. 1.4,а). Изготовление такого диффузанта  не   представляет  трудностей:  соответствующие   количества   порошков     P2O5  и CaO смешивают и обжигают в сухом азоте при 900°С. В результате получают чистое твердое стекло. Молекулы CaO обладают очень большой стабильностью и при температуре диффузии не восстанавлеваются до чистого кальция, который мог бы  диффундировать в полупроводниковый материал.

Рис 1.4. Диаграмма состояний соединений: а - пятиокиси фосфора – окиси кальция,  б - окиси бора – двуокиси кремния.
Типичным диффузантом акцепторной примеси является боросиликатное стекло B2O3 – SiO2. Из диаграммы состояния (рис. 1.4,б) которого видно, что при диффузии из борного ангидрида на поверхности кремния присутствует жидкий слой  боросиликатного стекла.
Для получения стекловидных пленок  используют большей частью силикатные легкоплавкие стекла, получаемые путем сплавления двуокиси кремния с окислами других элементов. Сейчас установлены общие закономерности зависимости свойств стекла от состава [12], что позволяет заранее выбирать композиции, обладающие комплексом требуемых свойств. Предварительно сплавленное стекло затем измельчается (измельченное стекло носит название фритты). К размеру частиц фритты предъявляются строгие требования. Например, в [13,14] указывается, что для получения тонких стекловидных пленок необходимо измельчать частицы исходного стекла до      1 мкм и мельче. Для получения фритты с такой высокой дисперсностью частиц применяют сначала виброизмельчение, а затем длительный мокрый помол  в шаровой мельнице. Продолжительность измельчения в вибромельнице составляет   2 – 3, а в шаровой – 140 – 150 час. Далее измельченная фритта подвергается отстаиванию в смеси  этилового и изопропилового спиртов [14]. Крупные частицы собираются на дне в течение первого периода отстаивания, а более мелкие удерживаются во взвешенном состоянии. Такую суспензию используют для осаждения из нее тонкого слоя порошка стекла на поверхность полупроводниковых пластин с помощью центрифуги. Процесс осаждения длится 2 – 3 мин. при скорости вращения центрифуги 4000 об.∙мин.−1.
Считается, что особое внимание должно быть уделено выбору подходящей дисперсионной среды, которая должна легко испаряться.
Методом наплавления создают только пленки из легкоплавких силикатных (или других) стекол. Метод прост. Основным недостатком таких пленок является содержание в них посторонних примесей, попадающих в фритту из материала мелющих тел и футеровки мельниц при длительном помоле.
1.1.7. Легированные окислы 
Одним из методов, позволяющих в широких пределах варьировать поверхностную концентрацию, является диффузия из легированных окислов. Помимо возможности варьирования поверхностной концентрации, метод позволяет осуществлять локальную диффузию (не только в том смысле, что диффузия будет идти в участки поверхности кремния, не защищенные маскирующим слоем, но и в том смысле, что она будет происходить только там, куда нанесен легированный окисел). Сущность метода заключается в том, что на всю поверхность кремниевой пластины или на какие-либо ее участки перед диффузией наносится слой двуокиси кремния, легированный в необходимой степени заданной примесью. Этот слой окисла является  источником диффундирующих атомов. Для создания такого легированного окисла может, например, использоваться метод пиролитического разложения [14] или метод получения легированных пленок из пленкообразующих растворов. Второй метод будет рассмотрен более подробно, так как он находит применение для промышленного изготовления современных кремниевых солнечных элементов.
    
1.1.7.1. Получение пленок стекла методом пиролитического разложения
Пиролизом принято называть процесс термического разложения химических соединений, при котором выделяется твердое пленкообразующее вещество и летучие ингридиенты. Обычно процесс термического разложения осуществляют в инертном газе или в вакууме. В последнем случае вакуумированный объем заполняется парами вещества, подвергающегося пиролитическому разложению. Процесс пиролиза протекает легко. Он возбуждается нагреванием до такой температуры, при которой начинается деструкция молекулы на составляющие ее атомы и группы атомов.
В зависимости от исходного вещества путем пиролиза можно получать оксидные, металлические, неметаллические и другие виды пленок. Наиболее широко распространен пиролиз кремнийоксиорганических соединений [14], при котором в качестве твердого продукта реакции выделяется двуокись кремния:
                       700°С
C2H5Si(OC2H5)  →  SiO2.
В лабораторной и промышленной практике элементоксиорганические соединения разлагают в нагретом объеме, а образующиеся при разложении окислы направляют через насадку. Истекающую из насадки струю направляют на поверхность покрываемой пластины.
Следует подчеркнуть, что пиролизом можно получать окислы различных элементов, для чего в качестве исходных материалов необходимо брать соответствующие элементоксиорганические соединения. Условия, при которых осуществляется пиролиз, для каждого соединения подбираются экспериментальным путем. Некоторые примеры исходных веществ и образующихся из них пленок приведены в табл. 1.1.
Таблица 1.1.

Условия пиролиза некоторых элементоксиорганических соединений

Соединение

Состав окисной пленки
Температура, °С
Давление, мм рт. ст.
Этилтриэтоксисилан                                                        C2H5Si(OC2H5)3

SiO2

700
780
Тетраэтоксисилан   (C2H5O)4Si
SiO2
740
1000
Трибутоксиалюминий   (C4H9O)3Al
Al2O3
660
1100
Тетраэтоксититан   (C2H5O)4Ti
TiO2
600
820
Трибутилборат   (C4H9O)3B
B2O3
450
760
 
Кроме давления и температуры на кинетику процесса пиролитического разложения существенное влияние оказывает состав газовой среды. Экспериментально установлено, что винилтриэтоксисилан разлагается при 600–700°С, а тетраэтоксисилан – при 728–840°С [14]. Введение же кислорода в качестве газа-переносчика в реакционное пространство позволяет снизить температуру деструкции указанных кремнеорганических эфиров до 350°С .
Методом пиролиза можно также получать пленки, состоящие из окислов двух и более элементов. При использовании стеклообразующих окислов можно получать стекловидные пленки. В [6] рассмотрен способ получения легированной двуокиси кремния. При этом пластины кремния помещают в печь при не очень высокой температуре (750°С) и над ними пропускают пары алкоксисилана, легированного, например, триметилборатом или трипропилборатом (в случае диффузии бора) или триметилфосфатом (в случае диффузии фосфора). Попадая на поверхность кремниевых пластин, пары силана разлагаются и образуют слой легированного окисла.
Пластина  с   нанесенным легированным   окислом  помещается  в  печь  с  потоком  нейтрального  газа, и  при температуре осуществляется диффузионная выдержка. Если несущий газ содержит кислород, то граничащие с кремнием слои источника могут обедняться за время порядка 1 ч. При использовании в качестве лигатуры триметилбората возможно получение поверхностной концентрации бора от 1018 до 1020 см–3, а в случае применения трипропилбората поверхностная концентрация может меняться в пределах от 1017 до 1019 см–3. Окислы, легированные триметилфосфатом, позволяют менять поверхностную концентрацию фосфора от 1019 до 2∙1020 см–3. (Все эти данные для диапазона температур 1100 – 1300°С.) Метод позволяет обеспечить довольно малый разброс поверхностной концентрации (4 – 5 %).
Однако поскольку перенос вещества, содержащего диффузант, осуществляется в газообразной среде, этому методу присущи некоторые недостатки, связанные в первую очередь с процессом переноса компонент осаждаемого слоя. К их числу следует отнести следующие [14]:
1.  Трудность обеспечения точной дозировки примеси. Количество осаждаемой примеси по указанному методу определяется расходом газа, температурой смеси органосилана и легирующего вещества, температурой полупроводниковой пластины, временем проведения процесса. Точность дозировки примеси определяется точностью поддержания указанных параметров.
2.             Неравномерность распределения диффузанта по поверхности полупроводниковой пластины, вызываемая турбулентностью потока компонент в реакторе.
3.             Нелинейность зависимости количества диффузанта в осаждаемом слое от процентного содержания смеси.
4.             Длительность процесса нанесения и сложность используемого оборудования для пиролитического разложения, обеспечивающего высокую чистоту процесса.
  
1.1.7.2. Источники, полученные осаждением пленок стекла из пленкообразующих  растворов
Для создания силикатных пленок в сравнительно "мягких" условиях представляется перспективным применение пленкообразующих растворов, содержащих соединения, разлагающиеся при сравнительно низких температурах. Это могут быть продукты гидролитической поликонденсации таких кремнеорганических эфиров, как, например, этиловый или бутиловый эфир ортокремневой кислоты, либо таких соединений, как диметилэтоксихлорсилан, которые при гидролитической поликонденсации образуют силоксановые цепи, склонные образовывать полимеры. Если нанести подобный раствор на твердую поверхность, то после испарения растворителя на поверхности останется пленка. Последующая кратковременная термоокислительная  деструкция  при  температурах 250 – 700°С превращает пленку в стекловидную. 
Наиболее известным методом получения пленок SiO2 из пленкообразующих растворов является метод, когда в качестве исходных кремнийорганических соединений  используются алкоксисиланы [13,14]. По своей химической структуре эти соединения представляют собой гидрид кремния Sigh4, в котором все атомы водорода замещены радикальными группами. Например, в тетраэтоксисилане (ТЭС) Si(OC2H5)4 эти группы имеют состав (OC2H5). Следует заметить, что тераэтоксисилан имеет несколько синонимов, наиболее распространенными являются: этилсиликат, этиловый эфир ортокремневой кислоты, тетраэтоксикремний, тетраэтилоксисилан, тетраэтилортосиликат, промышленное название – этилсиликат-40 (40 % SiO2) [15]. Другие этоксисиланы содержат одну-три группы (OC2H5), а остальные радикалы у кремния замещены какими-либо другими органическими группами. При нормальных условиях эти соединения представляют собой жидкости, пары которых разлагаются в диапазоне 600 – 900°С. Процесс получения пленок SiO2 осуществляется в три стадии: получение пленкообразующего раствора, нанесение пленки и ее термодеструкция. Рассмотрим его на примере использования в качестве исходного соединения тетраэтоксисилана Si(OC2H5)4 [14].
При получении пленкообразующего раствора вначале осуществляют гидролиз исходного соединения:

R                                               R

׀                                                ׀
                     R – Si – R   +  2H2O   →       HO – Si – OH      + 2HR
׀                                                ׀
R                                               R
(R – функциональная группа – OC2H5).
Далее, вводя катализатор (соляную кислоту), осуществляют реакцию поликонденсации гидроксильных групп с образованием силоксановых связей:
                              ׀                             ׀                   ׀             ׀
                          – Si – OH   +  HO – Si –   →    – Si – O – Si –     + H2O.
                              ׀                             ׀                   ׀             ׀
В результате этой реакции раствор приобретает пленкообразующие свойства. В раствор могут вводиться растворитель (ацетон, этиловый спирт), а также легирующие элементы, например в виде азотнокислых солей.
Для нанесения этих пленкообразующих растворов на поверхности разработаны разные способы:
1.  Погружение покрываемой пластины в пленкообразующий раствор. Способ наиболее экономичен. Толщина образующейся пленки зависит от многих факторов, среди них такие, как концеттрация раствора, скорость подъема пластины, угол наклона ее относительно поверхности раствора, вязкость раствора. Образование пленки сразу же и фиксируется изменением интерфененционной окраски. Особенностью этого способа является опускание уровня раствора (а не извлечение пластины из раствора).
2.  Распыление или пульверизация пленкообразующего раствора. Этот способ менее экономичен вследствие большого расхода жидкости, требует тонкого распыления до едва заметного тумана. Раствор обычно напыляют на нагретую до 100 – 400°С пластину. Модификация этого метода состоит в том, что покрываемая пластина вращается, а на нее последовательно направляют сопла, распыляющие пленкообразующие растворы.
3.  Нанесение пленкообразующего раствора пипеткой на выпуклую или плоскую поверхность, которая вращается с фиксированной скоростью. В этом случае расход раствора незначителен. Пленка формируется сразу же по мере испарения легколетучих растворителей еще в период центробежного разбрасывания раствора в результате вращательного движения, сообщенного пластине. Затем может быть применена термообработка пленки.
Наиболее применимым в технологии изготовления СЭ на сегодняшнее время является  метод центрифугирования, когда пипеткой на полупроводниковые пластины наносится раствор заданного состава.
1.1.7.2.1. Приготовление пленкообразующих растворов, их нанесение и термодеструкция
Технология  приготовления пленкообразующих растворов, их нанесение и термодеструкция играет исключительно важную роль в процессе создания диффузионных слоев данным методом. Наиболее полно этот вопрос освещен    в [14 ].
Например, описывается получение пленкообразующих растворов путем  проведения гидролиза этилового эфира ортокремневой кислоты  в две стадии. Процесс осуществляют путем смешивания 130 мл этилового эфира ортокремневой кислоты (ТЭС) с 60 мл 86 %-ного спирта, 20 мл воды и 2 капель концентрированной соляной кислоты. Через час к раствору приливают еще     90 мл ТЭС, и раствор оставляют на сутки при комнатной температуре. Для получения более глубоко гидролизованного продукта вносят 20 мл разбавленной (1: 5) соляной кислоты в 100 мл полученного раствора и через час вливают при перемешивании 100 мл воды.
Другим методом пленкообразующий раствор получают осуществляя гидролиз ТЭС солятой кислотой в количестве 0,6 мл плотностью 1,19 в 98 %-ном этиловом спирте. При этом на 0,04 – 0,12 г-моля HCl берется 1 г-моль ТЭС и 4 моля воды. В качестве растворителя применяют также ацетон. В таком растворе пленкообразующие свойства проявляются не сразу, а токда, когда в основной массе пленкообразующего раствора вместо ТЭС будет находиться продукт его гидролитической поликонденсации Si2O(OC2H5)6 и небольшое количество соединений, содержащих 3, 4 или 5 атомов кремния. При нанесении этих растворов на вращающуюся подложку испаряются летучие компоненты и образуется оводненная полиэфирная пленка, которая последующим прогреванием при 230°С и более высоких температурах превращается в кремнеземную.
Предыдущая страница 1 2 3 4 5 6 7 8 9 10 Следующая страница


Разработка источников диффузионного легирования для производства кремниевых солнечных элементов

Скачать дипломную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=163&часть=5



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com