Реферат на тему "Революция в оптике лазеры и их применение"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Революция в оптике лазеры и их применение

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 45.96 кб.
Язык: русский
Разместил (а): Максим Миз в
Предыдущая страница 1 2 3 4

добавить материал

Такой способ в отличие от обычного применяемого в  оптических дисках не деформирует поверхность  диска  и  позволяет  повторную запись без дополнительного оборудования. Этот способ также  имеет преимущество  перед  традиционной  магнитной  записью в плане надежности. Так как перемагничеваниие  участков  диска  возможно только  под  действием  высокой   температуры,   то   вероятность случайного  перемагничевания   очень   низкая,   в отличие от традиционной магнитной записи, к потери которой могут  привести случайные магнитные поля.
Область  применения  МО  дисков  определяется   его   высокими характеристиками по надежности, объему  и  сменяемости.  МО  диск необходим для задач, требующих  большого  дискового  объема.  Это такие задачи,  как обработка  изображений  звука.  Однако небольшая  скорость  доступа  к  данным,  не   дает   возможности применять МО диски для задач с  критичной  реактивностью систем. Поэтому применение МО дисков в таких задачах сводится к  хранению на них временной или резервной информации. Для  МО  дисков  очень выгодным использованием является  резервное  копирование  жестких дисков или баз данных. В отличие от традиционно  применяемых  для этих целей стримеров, при хранение  резервной  информации  на  МО дисках, существенно увеличивается скорость восстановления  данных после  сбоя.  Это  объясняется  тем,  что   МО   диски   являются   устройствами   с    произвольным    доступом,    что    позволяет   восстанавливать   только   те  данные,  в  которых  обнаружился  сбой.  Кроме  этого  при  таком  способе  восстановления  нет  необходимости  полностью  останавливать  систему  до полного восстановления данных. Эти  достоинства  в  сочетании  с  высокой  надежностью   хранения информации делают применение МО дисков при резервном  копировании выгодным, хотя и более дорогим по сравнению со стримерами.
Применение  МО  дисков,  также  целесообразно  при  работе  с приватной информацией больших объемов. Легкая сменяемость дисков позволяет использовать их только во время работы, не заботясь об охране компьютера в нерабочее  время,  данные  могут  храниться  в отдельном, охраняемом месте. Это же  свойство  делает  МО  диски незаменимыми  в  ситуации,  когда  необходимо  перевозить  большие объемы с места на место, например с работы домой и обратно.
Основные перспективы развития МО дисков связаны прежде всего с  увеличением  скорости  записи   данных.   Медленная   скорость определяется в первую очередь  двухпроходным  алгоритмом  записи. В этом алгоритме нули и единицы пишутся за разные проходы из-за того, что магнитное  поле,  задающие  направление  поляризации конкретных точек на диске, не  может изменять  свое  направление достаточно быстро.
Наиболее реальная альтернатива  двухпроходной  записи - это технология, основанная на изменение  фазового  состояния.  Такая система  уже  реализована  некоторыми  фирмами-производителями. Существуют еще несколько разработок в этом направлении, связанные с  полимерными  красителями  и  модуляциями  магнитного  поля   и мощности излучения лазера.
Технология, основанная  на  изменении   фазового  состояния, основана на способности вещества переходить  из  кристаллического состояния в аморфное. Достаточно  осветить  некоторую  точку  на поверхности  диска  лучом  лазера  определенной   мощности,   как вещество в этой точке перейдет в  аморфное  состояние.  При  этом изменяется отражающая способность  диска  в  этой  точке. Запись информации происходит значительно быстрее, но при этом деформируется поверхность диска, что ограничивает  число  циклов перезаписи.
В настоящие время уже разрабатывается технология, позволяющая менять полярность магнитного поля  на  противоположную  всего  за несколько  наносекунд.  Это  позволит  изменять  магнитное  поле  синхронно  с поступлением данных на запись. Существует  также   технология,   построенная   на   модуляции излучения лазера. В этой технологии  дисковод  работает  в  трех режимах: режим чтения с низкой интенсивностью, режим  записи  со средней интенсивностью и режим записи с  высокой  интенсивностью. Модуляция интенсивности  лазерного  луча  требует  более  сложной структуры    диска  и    дополнения механизма дисковода инициализирующим магнитом, установленным перед магнитом  смещения и имеющим противоположную полярность. В самом простом случае диск имеет  два  рабочих  слоя  -  инициализирующий  и   записывающий. Инициализирующий   слой   сделан   из   такого   материала,   что инициализирующий  магнит  может  изменять  его   полярность   без дополнительного   воздействия   лазера.  
Безусловно  МО  диски  перспективные  и  бурно  развивающиеся устройства, которые могут решать назревающие проблемы с большими объемами информации. Но их дальнейшее развитие зависит не  только от технологии записи на них, но и от прогресса в области  других носителей информации. И если не будет изобретен более эффективный способ хранения информации, МО диски возможно займут доминирующие роли.

ГОЛОГРАФИЯ.

 
Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплёнка). Однако информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн.
Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах падающих на неё волн, но и о фазах, то есть полную информацию. Восстановленная с помощью такой записи волна полностью идентична первоначальной и содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны.
Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию.
Первоначальная задача голографии заключалась в получении объёмного изображения. С развитием голографии на толстослойных пластинах возникла возможность создания объёмных цветных фотографий. На этой базе исследуются пути реализации голографического кино, телевидения и т. д.
Один из методов прикладной голографии, именуемый голографической интерферометрией, нашел очень широкое распространение. Суть метода в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, при деформации. При просвечивании такой “двойной” голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, что и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на новом изображении наблюдаются интерференционные полосы, которые и характеризуют изменение состояния объекта.
В другом варианте голограмма изготавливается для какого-то определенного состояния объекта. При просвечивании ее объект не удаляется и производится его повторное освещение, как на первом этапе голографирования. Тогда опять получается две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-то изменения в состоянии объекта (в двух последовательных волнами возникает разность сравнении с тем, что было во время экспонирования голограммы), то между указанными хода, и изображение покрывается интерференционными полосами. Описанный способ применяется для исследования деформаций предметов, их вибраций, поступательного движения и вращений, неоднородности прозрачных объектов и т. п.
 Интересно применение голографии в качестве носителя информации. Часто необходимо получить объемное изображение предмета, которого еще не существует, и следовательно, нельзя получить голограмму такого предмета оптическими методами. В этом случае голограмма рассчитывается на ЭВМ (цифровая голограмма) и результаты расчета соответствующим образом переносятся на фотопластинку. С полученной таким способом машинной голограммы объемное изображение предмета восстанавливается обычным оптическим способам. Поверхность предмета, полученного по машинной голограмме, используется как эталон, с которым методами голографической интерференции производится сравнение поверхности реального предмета, изготовляемого соответствующими инструментами. Голографическая интерферометрия позволяет произвести сравнение поверхности изготовленного предмета и эталона с чрезвычайно большой точностью до долей длины волны. Это дает возможность изготовлять с такой же большой точностью очень сложные поверхности, которые было бы невозможно изготовить без применения цифровой голографии и методов голографической интерферометрии. Само собой разумеется, что для сравнения эталонной поверхности с изготовляемой не обязательно восстанавливать оптическим способом машинную голограмму. Можно снять голограмму предмета, перевести ее на цифровой язык ЭВМ и сравнить с цифровой голограммой. Оба эти пути в принципе эквивалентны.
Особенности голограмм как носителей информации делают весьма перспективными разработки по созданию голографической памяти, которая характеризуется большим объемом, надежностью, быстротой считывания и т. д.

КРАТКИЙ ИСТОРИЧЕСКИЙ ОБЗОР.

                                                                
 Первые расчеты, касающиеся возможности создания  лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым  был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и  Херриотт  создали гелий-неоновый лазер, работающий  в инфракрасной области на ряде линий в районе 1 мк. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые  лазеры, работающие в инфракрасной области, включая лазеры с использованием других благородных газов и  атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А  при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным  переходов такого типа, но и к лазерным применениям, так  как  при этом  были открыты  многие новые  и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента. Два года, последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности  этого типа лазера. Тем временем продолжались поиски  новых длин волн и были открыты многие инфракрасные  и несколько новых переходов в видимой области спектра.  Наиболее  важным  из  них является  открытие Матиасом импульсных  лазерных переходов  в молекулярном азоте  и в окиси углерода.                      
 Следующим  наиболее  важным  этапом  в  развитии  лазеров  было открытие  Беллом  в конце 1963 г. лазера, работающего на  ионах ртути.  Хотя лазер на ионах ртути  сам по  себе не  оправдал первоначальных надежд на  получение больших мощностей  в непрерывном   режиме  в  красной  и   зеленой  областях   спектра,  это открытие  указало  новые  режимы  разряда,   при  которых могут  быть  обнаружены   лазерные  переходы   в  видимой области  спектра.  Поиски  таких переходов  были проведены  также  среди  других  ионов. Вскоре  было обнаружено, что  ионы  аргона  представляют  собой  наилучший  источник  лазерных  переходов  с  большой  мощностью в  видимой области и  что на  них может  быть получена генерация в  непрерывном режиме. В  результате дальнейших  усовершенствований  аргонового  лазера  в  непрерывном  режиме  была  получена  наиболее   высокая  мощность,  какая только  возможна в  видимой области.  В результате  поисков  была открыта  генерация на  200 ионных переходах,  сосредоточенных  главным  образом  в видимой, а также  в ультрафиолетовой  частях спектра. 
 Тем временем технические усовершенствования лазеров быстро расширялись,  в результате  чего исчезли многие  “колдовские”  ухищрения  первых  конструкций гелий-неоновых  и других  газовых  лазеров.  Исследования  таких  лазеров,  начатые  Беннетом, продолжались до  тех  пор,  пока не  был создан  гелий-неоновый лазер, который  можно  установить  на  обычном  столе  с полной уверенностью  в  том,  что  лазер  будет  функционировать так,  как  это  ожидалось  при  его  создании.  Аргоновый ионный  лазер  не  исследован  столь  же  хорошо, однако большое число  оригинальных  работ   Гордона  Бриджеса позволяет  предвидеть в  разумных пределах возможные параметры такого лазера.                  
На  протяжении  последнего года появился ряд интересных  работ,  посвященных   газовым  лазерам, однако  еще  слишком  рано  определять  их  относительную  ценность.  К  всеобщему  удивлению   наиболее  важным  достижением  явилось  открытие  Пейтелом  генерации вынужденного  излучения  в  СО2  на  полосе  1,6 мк  с высоким КПД выходная  мощность в  этих лазерах может быть доведена до сотен ватт, что обещает открыть целую новую область  лазерных  применений. 

ЗАКЛЮЧЕНИЕ.

 
Лазеры решительно и притом широким фронтом вторгаются в нашу действительность. Они необычайно расширили наши возможности в самых различных областях - обработке металлов, медицине, измерении, контроле, физических, химических и биологических исследованиях. Уже сегодня лазерный луч овладел множеством полезных и интересных профессий. Во многих случаях использование лазерного луча позволяет получить уникальные результаты. Можно не сомневаться, что в будущем луч лазера подарит нам новые возможности, представляющиеся сегодня фантастическими.
Мы уже начали привыкать, что “лазер все может”. Подчас это мешает трезво оценить реальные возможности лазерной техники на современном этапе ее развития. Неудивительно, что чрезмерные восторги по поводу возможностей лазера иногда сменяются некоторым охлаждением к нему. Все это, однако, не может замаскировать основной факт - с изобретением лазера человечество получило в свое распоряжение качественно новый, в высокой степени универсальный, очень эффективный инструмент для повседневной, производственной и научной  деятельности. С годами этот инструмент будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров.

ЛИТЕРАТУРА.

 
1.      Кабардин О. Ф.“Физика” М.: Просвещение, 1988г.
2.      ”Газовые лазеры” (под. ред. Н.Н. Соболева) М.: Мир, 1968г.
3.      Айден К. Аппаратные средства PC: перевод с нем. - Санкт-Петербург: BHV - СПб, 1996. 
4.      Китайгородский А. И. Физика для всех: Фотоны и ядра. - М.: Наука, 1982.
5.      Ландсберг Г. С.  Оптика. - М.: Наука, 1976.
6.      Ландсберг Г. С. Элементарный учебник физики. - М.: Наука, 1986.
7.      Матвеев А. Н. Оптика. - М.: Высшая школа, 1985..
8.      Мякишев Г. Я., Буховцев Б. Б. Физика. - М.: Просвещение, 1998.
9.      Сивухин В. А. Общий курс физики. Оптика. - М.: Наука, 1980.
10.  Тарасов Л. В. Лазеры. Действительность и надежды. - М.: Наука, 1985.
                                                              

ОГЛАВЛЕНИЕ.

 
 TOC \o "1-1" ВВЕДЕНИЕ.............................................................................................................................................................. PAGEREF _Toc57136769 \h 2
ЛАЗЕРНАЯ ТЕХНОЛОГИЯ................................................................................................................................ PAGEREF _Toc57136770 \h 4
ПРИНЦИП ДЕЙСТВИЯ ЛАЗЕРОВ.................................................................................................................... PAGEREF _Toc57136771 \h 5
ОСНОВНЫЕ СВОЙСТВА ЛАЗЕРНОГО ЛУЧА............................................................................................ PAGEREF _Toc57136772 \h 6
МОНОХРОМОТИЧНОСТЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ. ЕГО МОЩНОСТЬ....................................... PAGEREF _Toc57136773 \h 7
ГИГАНСКИЙ ИМПУЛЬС.................................................................................................................................... PAGEREF _Toc57136774 \h 9
ПРИМЕНЕНИЕ ЛАЗЕРОВ................................................................................................................................... PAGEREF _Toc57136775 \h 9
ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ................................... PAGEREF _Toc57136776 \h 10
ПРИМЕНЕНИЕ ЛАЗЕРОВ В МЕДИЦИНЕ................................................................................................... PAGEREF _Toc57136777 \h 12
ХАРАКТЕРИСТИКИ НЕКОТОРЫХ ТИПОВ ЛАЗЕРОВ........................................................................... PAGEREF _Toc57136778 \h 13
ГОЛОГРАФИЯ...................................................................................................................................................... PAGEREF _Toc57136779 \h 20
КРАТКИЙ ИСТОРИЧЕСКИЙ ОБЗОР............................................................................................................. PAGEREF _Toc57136780 \h 22
ЗАКЛЮЧЕНИЕ........................................................................................................................................
document.getElementById("lc").innerHTML="Загрузка 70%";
Предыдущая страница 1 2 3 4


Революция в оптике лазеры и их применение

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=217&часть=4



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com