Реферат на тему "Работа редактора с формулами"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Курсовая на тему Работа редактора с формулами

скачать

Найти другие подобные рефераты.

Курсовая *
Размер: 109.96 кб.
Язык: русский
Разместил (а): Ирина
Предыдущая страница 1 2 3 4 Следующая страница

добавить материал

 
 
 
 
 
 
 
 
 
 
 
 
2.  Основная часть.  Математические формулы
Математической формулой называется символическая запись какого-либо утверждения (предложения, суждения). Формулы помогают заменить в тексте сложные словесные выкладки, различные операции с количественными показателями. Для этого используют специальные условные обозначения, называемые символами, которые можно разбить на три группы:
1) условные буквенные обозначения математических и физических величин;
2) условные обозначения единиц величин;
3) математические знаки.
Математические формулы используются в научной, научно-практической, производственной и учебной литературе. Причем основная сложность работы с данным видом текста состоит в том, что применяется он в литературе, предназначенной для читателей и пользователей с различной степенью подготовки. Так, например, для научных сотрудников, людей с высшим техническим образованием и студентов технических ВУЗов допустим ряд сложных математических выкладок без подробного описания всех математических действий. Для школьников в учебной литературе такой прием недопустим, так как их подготовка еще слаба, и сложные выкладки без подробных пояснений будут для них непонятны.
В книгах должны быть использованы символы, утвержденные государственными стандартами, а если таковых нет, то — общепринятые в данной отрасли науки или производства.
В качестве условных буквенных обозначений используют не менее ста букв русского латинского, греческого и готического алфавитов. Однако во всех областях математики, физики, техники и некоторых других науках употребляются десятки тысяч понятий, буквенные обозначения которых должны различаться между собой. Естественно, что некоторые однотипные условные буквенные обозначения с равным правом используют в различных отраслях.
Многие величины, необходимые только в одной отрасли науки, должны иметь свои собственные обозначения, отличающиеся от обозначений сходных величин в других отраслях науки. Чтобы индивидуализировать символ, применяют индексы. К основному буквенному обозначению добавляют значок, указывающий на частное значение.
 
 
 
2.1                 Расположение формул
2.1.1   Формулы, выключенные отдельными строками
Наиболее важные формулы, а также длинные и громоздкие формулы, содержащие крупнокегельные знаки суммирования произведения, дифференцирования интегрирования и г. п., выключают в отдельные строки. Таким же образом располагают и все нумерованные формулы. При этом возможна выключка как на середину, так и в левый (иногда в правый) край строки или с небольшой втяжкой
 
 
2.1.2    Формулы, помещенные в подбор одна к другой
Для экономии места несколько коротких однотипных формул, выделенных из текста, можно помещать в одной строке, а не одну под другой (см. 2.8.5).
 
 
 
 
2.1.3  Формулы, помещенные внутри строк текста
Внутри строк текста размещают прежде всего небольшие и несложные формулы, не имеющие самостоятельного значения. Но и во многих других случаях расположение формул отдельными строками не вызывается необходимостью, и при размещении их в подбор с текстом можно добиться значительной экономии бумаги и сократить объем ручной доработки набранного на машине текста или объем монтажа при фотонаборе (см. 2.8.4).
2.2. Нумерация формул
Нумеровать следует наиболее важные формулы, на которые имеются ссылки в последующем тексте. Не рекомендуется, как правило, нумеровать формулы, на которые ссылок в тексте нет.
2.2.2 Форма номера
Порядковые номера формул обозначают арабскими цифрами в круглых скобках у правого края полосы без отточия от формулы к ее номеру. Применяются арабские цифры со строчными буквами (2.2.10) и буквами или звездочками (2.2.11).
 
2.2.3   Место номера, не умещающегося в строке формулы
Его располагают в следующей строке ниже формулы.
 
2.2.4 Место номера при переносе формулы
Его располагают на уровне последней строки.
(Приложение 1. Пример 1)
 
2.2.5 Место номера формулы в рамке
Его располагают вне рамки в правый край против основной строки формулы.
 
2.2.6 Место номера формулы-дроби
Номер выключают посередине основной горизонтальной черты формулы.
 
2.2.7 Нумерация небольших формул, помещенных в одной строке
Несколько небольших формул, составляющих единую группу, помещают в одну строку и объединяют одним номером.
 
2.2.8 Нумерация группы формул, расположенных отдельными строками
Ставят справа от этой группы фигурные скобки, охватывающие по высоте все формулы, — парантез. Острие парантеза находится в середине группы формул по высоте и обращено в сторону номера, помещаемого в скобке против острия в правом крае полосы.
(Приложение 1. Пример 2)
 
2.2.9    Нумерация группы формул — системы уравнений
В математической литературе парантез допускается ставить слева от группы формул — системы уравнений, а номер помещать против сере­дины группы формул. (Приложение 1. Пример 3)
При отсутствии парантеза номер также помещают против середины группы формул.
 
 
 
 
2.2.10   Нумерация формул — разновидностей основной формулы
Формулы — разновидности приведенной ранее основной формулы допускается нумеровать арабской цифрой и прямой строчной буквой русского алфавита, набираемой слитно с цифрой.
(Приложение 1. Пример 4)
2.2.11   Нумерация промежуточных формул,
не имеющих самостоятельного значения
Такие формулы, приводимые для вывода основных формул, нумеруют иногда либо строчными буквами русского алфавита, набираемыми прямым шрифтом в круглых скобках, либо звездочками в круглых скобках.
(Приложение 1. Пример 5)
 
2.2.12   Сквозная нумерация формул
Применяется в небольших работах, где нумеруется ограниченное число наиболее важных формул. Такую же нумерацию можно использовать и в более объемных работах, если пронумерованных формул не слишком много и в одних главах содержится мало ссылок на формулы из других глав.
 
2.2.13   Двойная индексационная нумерация формул
Применяется, как правило, при делении текста на главы и параграфы, когда такая нумерация используется и для других рядов: рубрик, иллюстраций, таблиц. Сначала указывают номер главы (или параграфа), затем ставят точку и   приводят номер формулы в данной главе (параграфе).
(Приложение 1. Пример 6)
Римские цифры для нумерации формул обычно не применяют (хотя в книге номер главы может быть обозначен римскими цифрами).
 
2.2.14   Тройная индексационная нумерация формул
Применяется при сложной рубрикации, большом числе формул и множестве перекрестных ссылок на формулы из других глав.
 (Приложение 1. Пример 7)
 
2.3.    Ссылки на номера формул в тексте
2.3.1    Основная форма ссылки
При ссылках на какую-либо формулу ее номер ставят точно в той же графической форме, что и после формулы, т. е. арабскими цифрами в круглых скобках.
(Приложение 2. Пример 1)
2.3.2    Вариант ссылки без определяющего слова перед номером
Употреблять номера без определяющих слов в тексте изданий для массового читателя, учебных издании для средних учебных заведений не рекомендуется.
(Приложение 2. Пример 2)
Однако в изданиях для хорошо подготовленного читателя (научные работники, студенты вузов, специалисты с высшим образованием) с целью экономии бумаги можно опускать определяющее слово перед номером, т. е. применять вариант, который не рекомендуется для массовых изданий (см. Пример 2 в правой колонке).
 
 
 
 
2.3.3    Ссылка на формулу в тексте, заключенном в скобки
Если ссылка на номер формулы находится внутри выражения, заключенного в круглые скобки, то их рекомендуется заменять квадратными скобками.
(Приложение 2. Пример 3)
 
 
 
2.4     Пунктуация в тексте с формулами
2.4.1    Общее правило
Формула включается в предложение как его равноправный элемент. Поэтому в конце формул и в тексте перед ними знаки препинания ставят в соответствии с правилами пунктуации.
 
2.4.2    Двоеточие перед формулой
Ставят лишь в тех случаях, когда оно необходимо по правилам пунктуации:
а) в тексте перед формулой содержится обобщающее слово;
б) этого требует построение текста, предшествующего формуле.
(Приложение 3. Пример 1)
 
2.4.3    Знаки препинания между формулами
Формулы следующие одна за другой и не разделенные текстом, отделяют запятой или точкой с запятой. Указанные знаки препинания помещают непосредственно за формулами до их номера.
 
2.4.4    Знаки препинания между формулами при парантезе
Знаки препинания ставят внутри парантеза.
 
2.4.5    Знаки препинания после определителей и матриц
После таких громоздких математических выражений, как опре­делители и матрицы допускается знаки препинания не ставить.
2.5    Экспликация к формуле
2.5.1    Применение и состав экспликации
Экспликацию (расшифровку приведенных в левой и правой частях формулы буквенных обозначений величин) принято помещать после всех формул.
В экспликациях может быть опущена расшифровка общепринятых обозначений. Повторяющиеся обозначения могут не расшифровываться, если формулы расположены близко друг к другу.
При большом числе формул с повторяющимися  обозначениями целесообразно поместить в начале или в конце издания список обозначений с их расшифровкой и в экспликации повторяющиеся обозначения не включать.
 
2.5.2    Последовательность составных элементов
Последовательность расшифровки буквенных обозначений должна соответствовать последовательности расположения этих обозначений в формуле. Если правая часть формулы является дробью, то сначала поясняют обозначения величин, помещенных в числителе, в том же порядке, что и в формуле, а затем — в знаменателе.
 
 
 
2.5.3    Пунктуационное оформление текста с формулой и экспликацией
После формулы перед экспликацией ставят запятую, затем с новой строки от левого края слово где (без двоеточия после него), за ним обозначение первой величины и после тире его расшифровку и далее — каждое следующее обозначение и его расшифровку. В конце каждой расшифровки ставят точку с запятой, а в конце последней – точку. Обозначения физических величин в каждой расшифровке отделяют запятой от текста расшифровки.
(Приложение 4. Пример 1)
 
2.5.4  Графическое оформление экспликации
С целью экономии бумаги элементы экспликации рекомендуется располагать, как правило, в подбор. Начинать каждую расшифровку в экспликации с новой строки не рекомендуется, т. к. это ведет к снижению емкости печатного   листа. Такой способ оформления экспликации допустим в изданиях с очень небольшим числом формул, когда он практически не ведет к потере бумаги.
2.6    Оформление записи формулы
2.6.1 Скобки
В формулах следует в первую очередь использовать круглые скобки ( ), во вторую — квадратные [ ], в третью - фигурные { }.
(Приложение 5. Пример 1)
Если же круглых, квадратных и фигурных скобок недостаточно, то применяют круглые, прямые и фигурные скобки повышенного кегля.
 (Приложение 5. Пример 2)
Иногда в одной и той же формуле многократно используют только круглые скобки.
 (Приложение 5. Пример 3)
 
2.6.2    Коэффициенты
Коэффициенты в формулах следует ставить впереди буквенных обозначений слитно с ними.
(Приложение 5. Пример 4)
 
2.6.3    Употребление точки на средней линии как знака умножения
Этот знак служит основным знаком умножения.
  Точку как знак умножения ставят:
а)   перед числовым сомножителем;
б)   для выделения какого-либо множителя;
в)   для записи скалярного произведения векторов;
г)   между аргументом тригонометрической функции и буквенным обозначением;
д)   между знаком радикала (интеграла, логарифма) и сомножителем.
(Приложение 5. Пример 5)
 
Точку как знак умножения не ставят:
а) перед буквенными символами;
б) перед скобками и после них;
в) перед дробными выражениями и после них;
г) перед знаком интеграла (радикала, логарифма);
д) перед аргументом тригонометрической функции.
(Приложение 5. Пример 6)
Если вслед за тригонометрической функцией, радикалом, логарифмом и т. п. стоит множитель, представляющий собой буквенное выражение, то следует поменять местами сомножители и тем самым освободиться от знака умножения.
(Приложение 5. Пример 7)
 
2.6.4.    Употребление косого креста как знака умножения
Его ставят:
а)   при указании размеров, например, площадь комнаты;
б)   для записи векторного произведения векторов;
в)   при переносе формулы с одной строка на другую на знаке умножения.
(Приложение 5. Пример 8)
2.6.5    Многоточие в ряду перечисляемых, складываемых, приравниваемых символов
Применяется в виде трех точек на нижней линия строки. Запятые, знаки сложения, вычитания и равенства ставят перед отточием и после него.
 (Приложение 5. Пример 9)
 
2.6.6    Многоточие между перемножаемыми символами
В этом случае многоточие не отделяют запятыми, а набирают на среднюю линию.
(Приложение 5. Пример 10)
 
2.6.7    Многоточие и отточие в системах уравнении, матрицах, определителях
Символы, расположенные в виде столбцов, выключают по знаку многоточия. Перед последней строкой ставят отточие на полную строку.
(Приложение 5. Пример 11)
 
 
2.7    Переносы в формулах
2.7.1    Место и обозначение переноса
Если формула при наборе не умещается в одной строке, то ее частично переносят на другую строку. В первую очередь перенос следует производить на знаках отношения между левой и правой частями формулы  и  т. д., во вторую — на отточии (...), знаках сложения и вычитания (+ , - , ±), и в третью — на знаке умножения в виде косого креста ( ). На знаке деления перенос делать не рекомендуется.
При переносе формул нельзя отделять индексы и показатели степени от символов, к которым они относятся. Нельзя также отделять выражения, содержащиеся под знаком интеграла, логарифма, суммы (  , S ), произведения ( ), от самих знаков.
Знак, на котором производится перенос, оставляют в конце строки и повторяют в начале той строки, на которую перенесена часть формулы. В том случае, когда формула прерывается на отточии, ею также повторяют на следующей строке.
 
2.7.2    Перенос дроби с длинным числителем и коротким знаменателем
Для удобства переноса рекомендуется преобразовать дробь: числитель записать в виде многочлена в скобках, а величину, обратную знаменателю вынести за скобки.
(Приложение 6. Пример 1)
Во всех случаях формулу разбивают переносом на знаке плюс многочлена.
 
 
 
2.7.3    Перенос дроби с коротким числителем и длинным знаменателем
Для удобства переноса рекомендуется записать дробь, используя косую черту в качестве знака деления, как отношение числителя и знаменателя в виде многочленов, взятых в скобки. Можно также заменить отдельные сложные элементы знаменателя условными обозначениями, расшифрованными вслед за формулой.
(Приложение 6. Пример 2)
 
 
2.7.4   Перенос формулы с длинным подкоренным выражением, не умещающимся в формат набора
Такое выражение можно преобразовать, возведя в соответствующую степень подкоренное выражение.
(Приложение 6. Пример 3)
Здесь перенос также производят на знаке плюс многочлена.
2.8   Приемы обработки формул и текста с ними, позволяющие экономить площадь бумаги
2.8.1    Перевод выражений с горизонтальной дробной чертой в однострочные
Дробные выражения можно упростить частичной или полной заменой дробной черты на косую, а также введением десятичных дробей и отрицательных степеней.
(Приложение 7. Пример 1)
Указанные способы рекомендуется применять и при обозначении степеней, пределов интегрирования, подстрочных и надстрочных индексов.
(Приложение 7. Пример 2)
2.8.2  Запись с помощью обозначения ехр
Если показательная функция содержит длинный или громоздкий показатель, то такую функцию рекомендуется записать с помощью обозначения ехр и расположения ее показателя на строке с введением скобок.
(Приложение 7. Пример 3)
 
 
2.8.3   Свернутые формы записи математических выражений
Для экономии площади бумаги рекомендуется применять свернутые формы записи обозначений, матриц, определителей, систем линейных уравнений.
(Приложение 7. Пример 4)
(Приложение 7. Пример 5)
(Приложение 7. Пример 6)
Также следует применять замену однотипных формул, в которых величины изменяются по одному и тому же правилу, одним выражение.
(Приложение 7. Пример 7)
2.8.4  Формулы в подбор с текстом
Ряд несложных и ненумерованных формул располагают в подбор с текстом.
Предыдущая страница 1 2 3 4 Следующая страница


Работа редактора с формулами

Скачать курсовую работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=377&часть=2



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com