Реферат на тему "Особливості вивчення математики в профільних класах у сучасних умовах"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Диплом на тему Особливості вивчення математики в профільних класах у сучасних умовах

скачать

Найти другие подобные рефераты.

Диплом *
Размер: 209.3 кб.
Язык: украинский
Разместил (а): Шишенко Інна
Предыдущая страница 1 ... 8 9 10 11 12 13 14 15 16 Следующая страница

добавить материал

Формування базового змісту навчання математики здійснюється на засадах:
-         гуманізації та гуманітаризації;
-         профільної спрямованості;
-         забезпечення узагальнених видів діяльності [20].
Профільне навчання математиці повинно бути складною системою, що будується за принципами гуманності та відкритості.
Виділяються три етапи профільної диференціації в навчанні математиці.
Перший етап  (5 – 7 класи) – це етап формування профільних інтересів. Тут формується свідомий вибір рівня учбової діяльності (базовий, основний, поглиблений, творчий), в процесі змагань, ігрової та учбової діяльності формуються пізнавальні інтереси та мотиви пізнання учнів. На цьому етапі важливу роль відіграють різноманітні форми позакласної роботи з предмету: гуртки, турніри, конкурси, олімпіади, вечори цікавої математики тощо.
Другий етап (8 – 9 класи) – це етап становлення профільних намірів. Тут реалізується різнорівневе вивчення курсу математики за стандартними навчальними планами; приділяється посилена увага позакласній роботі учнів, організується самостійна робота учнів, що відповідає їх індивідуальним прихильностям, проводиться цілеспрямована робота щодо професіональної орієнтації учнів.
Третій етап (10 – 11 класи) – це етап безпосередньої реалізації профільного навчання математиці. Він забезпечується адекватним профілю змістом основного курсу математики, системою курсів за вибором, організацією самостійної творчої роботи учнів [За Інтернет-виданням].
Подібна структура профільного навчання математиці дозволяє якнайповніше врахувати індивідуальні особливості учнів за допомогою колективних форм навчання, забезпечити єдність рівневої та профільної диференціації. Профільне навчання передбачає, перш за все, наповнення курсу математики різноманітними, цікавими та складними задачами. На першому та другому етапах до процесу навчання включаються цікаві задачі, відомості з історії математики. На третьому етапі більше уваги приділяється розв’язанню задач, що відповідають вимогам для вступників до вищих навчальних закладів. У зв’язку з тим, що до класів приходять школярі з різним рівнем підготовки, у процес навчання на кожному етапі обов’язково включається повторення та систематизація знань [30].
Різноманітні профілі навчання математики у межах базової профільної математичної підготовки можна об'єднати у такі напрямки: загальнокультурний, прикладний, теоретичний.
Профільна диференціація навчання математики у межах базового компоненту в старшій школі реалізується створенням трьох курсів математики:
-         для загальнокультурного напрямку (професійний, мовно-літературний, суспільно-історичний, спортивний та інші профілі) – курс А;
-         для прикладного напрямку (технічний, технологічний, природничий, економічний, екологічний та інші профілі) – курс В;
-         для теоретичного напрямку (математичний, фізичний, фізико-математичний, “інформативний”, комп’ютерний та інші профілі) – курс С.
При цьому всі специфічні особливості даного профілю і конкретного контингенту учнів реалізуються в курсах за вибором та шляхом організації самостійної, індивідуальної і позакласної роботи.
Всі зазначені курси математики, як і курс математики для звичайної школи:
-         забезпечують інваріантну складову математичної підготовки, що визначається стандартом;
-         мають яскраво виражену профільну спрямованість, що враховує профільні наміри та інтереси учнів.
Ці курси відрізняються не стільки об’ємом знаннь, якими мають опанувати учні, скільки рівнем обгрунтованості, абстрактності, загальності і т.п. Іншими словами, вони повинні бути орієнтованими на різні типи мислення (насамперед образного, прикладного, теоретичного), на розвиток різних видів діяльності.
Кожний із цих курсів, віддаючи перевагу розвитку учнів – зокрема розвитку їхнього мислення й інтуїції, – може робити це різними засобами. Такий підхід дозволить у максимальній мірі використовувати профільні інтереси і наміри в навчанні математики. Він сприятиме впровадженню діяльнісних, активних методів навчання.
Інваріантна частина математичної освіти в старшій школі може реалізовуватись як двома курсами “Алгебра та початки аналізу”, “Геометрія”, так і інтегрованим курсом “Математика”. Інтегрований курс доцільний, насамперед, для загальнокультурного напрямку.
Варіативний компонент навчального плану при організації профільного навчання математики використовується для:
-         розширення змісту математичної освіти;
-         поглиблення математичної підготовки учнів у відповідності до обраного профілю;
-         організації індивідуальної роботи з учнями.
Ефективна організація профільного навчання математики потребує узгодження, об’єднання діяльності вчителів математики навчального закладу, створення єдиної команди. Це дозволить забезпечити різноманітні потреби учнів і найбільш повно використати потенціал навчального закладу [20].
У своїй діяльності вчителі математики будь-якого навчального закладу мають керуватися такими положеннями:
1)    зміст математичної освіти має бути чітко зорієнтований на розвиток особистості в цілому, а також тих видів діяльності, які є специфічними для даного профілю;
2)    зміст профільної математичної освіти має забезпечувати потреби профільної підготовки до математики;
3)    зміст математичної освіти для кожного профілю має забезпечувати визначену еквівалентність математичної підготовки учнів різних профілів. Це означає, зокрема, необхідність включення всіх основних традиційних змістових ліній шкільного курсу математики;
4)    для підвищення ролі математики в процесі осмислення навколишнього світу необхідне доповнення традиційних змістових ліній курсу математики матеріалом, який сприяє формуванню імовірнісно-статистичних уявлень в учнів;
5)    формування змісту математичної освіти сприятиме реалізації рівневої диференціації в навчанні математики. Насамперед, необхідно для кожного напряму виділити визначений стандарт математичної підготовки учнів;
6)    варіативна частина змісту забезпечується в основному курсами на вибір. Завдання курсу на вибір - повторення, систематизація й поглиблення матеріалу, досліджуваного в основному курсі, створення передумов для самостійної роботи учнів. Перелік курсів залежить від мотивів учнів, підготовки викладачів і наявності необхідного методичного забезпечення.
Зміст курсу математики реалізується в комплексі навчальних засобів. Тому необхідною умовою організації доброякісного профільного навчання є створення адекватного навчально-методичного забезпечення, що відбиває колективний досвід роботи викладачів, методистів, учених.
Структура навчально-методичного забезпечення профільного навчання математики така ж, як і для будь-якого предмета. Вона складається з:
-         нормативного комплексу (програма і робоча програма);
-         навчального комплексу (підручник, дидактичні матеріали, набори навчальних тестів, збірники задач, наочні прилади);
-         загально-методичного комплекту (посібники для вчителів);
-         методичного комплекту (матеріали розроблені викладачем);
-         системи контролю (тексти тематичних, підсумкових контрольних робіт, набори контролюючих тестів).
Навчально-методичне забезпечення повинне містити матеріали для курсів на вибір і для організації індивідуальної роботи з учнями. Навчально-методичне забезпечення повинно бути для кожного напряму профільного навчання математики [42].
Профільне навчання математики потребує і робить можливим використання специфічних форм та методів навчання. Можливість їх використання зумовлена наявністю більш розвинених мотивів учнів профільних класів та шкіл до навчання порівняно із загальноосвітніми навчальним закладами. Невід’ємною складовою профільного навчання математики є виконання кожним учнем індивідуальної роботи творчого характеру. При їх виконанні поряд з реферуванням літературних джерел, теоретичним розв’язанням математичної задачі використовуються спостереження, проведення експериментів як фізичних, так і імітаційних за допомогою ПЕОМ [20].

2.2. КУРС МАТЕМАТИКИ ДЛЯ КЛАСІВ ЗАГАЛЬНОКУЛЬТУРНОГО НАПРЯМКУ

 
Перехід до профільного навчання у старших класах створив зовсім нову, багато в чому унікальну ситуацію для шкільної математики. Математична, як і будь-яка інша освіта, була універсальною, однаковою, стандартною. Навчання не орієнтувалося на учня, учень пристосовувався до „прокрустового ложа” програм. Математику тихо боялися і вимушено поважали.
Одночасно з падінням всієї минулої ідеології школа почала різко кренитися до гуманітарної сфери. Останні роки характеризуються згортанням на практиці реальної математичної освіти (паралельно розвалюванню економіки). Але перш за все Україні потрібні освічені люди, особистості, що засвоїли її культуру, її цінності. Адже математика – частина людської культури.
Був зроблений важливий для всієї школи крок уперед: введено профілювання програм у старших класах. Тепер учні і вчителі зможуть обирати свій рівень. Один – для тих, хто в майбутньому планує вивчати математику далі. Тут все більш-менш зрозуміло: цим учням – гамми задач і вправ для підготовки до математики вищого учбового закладу. А як же бути з іншими, з тими, у кого математика школою завершиться?
Природно припустити, якщо їм математика не  буде потрібна, то і курс її у школі має бути скороченим. Внаслідок маємо дозвіл обмежити вивчення математики в таких класах всього 2-3 годинами на тиждень. Тоді давайте визнаємо, що для гуманітаріїв математика не потрібна зовсім. Якщо до цього зведеться ідея профільності у школі, то чи не отримаємо ми в результаті невиправний розрив між двома культурами – точною та гуманітарною, що здатен зруйнувати культуру взагалі?! 
Що ж потрібно гуманітаріям?
Дослідники визнають існування безпосереднього, стихійного зв’язку між вмінням розв’язувати задачі з математики і можливістю бути вільною людиною. Мова може йти навіть про психотерапевтичну роль уроків математики, оскільки вони вчать самовихованню. Розумним дітям потрібні знання про власну психіку і вміння їх застосовувати на основі інтелектуальних схем та звичок, що закладаються при вивченні математичних дисциплін. Тоді вони становляться самі для себе і педагогами, і психотерапевтами. Психологи ігнорують складність реального життєвого мислення, яке проявляється у плануванні людиною свого життя, у прийнятті найважливіших рішень. Цьому можна і потрібно навчати у школі. І навчання мисленню, яке йде на уроках математики, у цьому процесі відіграє дуже важливу роль.
Говорячи про уроки математики, мова йде не про стандартні задачі з задачників – їх, можливо, у житті ніколи й не зустрінеться, але про перенесення навиків мислення на життєві проблеми. Найголовніше – нам потрібно вчити дітей бути більш інтелектуальними при підході до життєвих проблем. І тут математику не замінити нічим. У цьому сама суть особистісно-орієнтованого підходу до освіти.
Одна з найважливіших цілей при навчанні математиці – логічно грамотне володіння мовою. Не правописом, звичайно, а вміння точно виразити свою думку, точно зрозуміти, що сказано чи написано.
Що ж має визначати характер і зміст майбутніх програм „для неспеціалістів” (тобто загальнокультурного напрямку)?
1.     Курс повинен бути не тренінгом, а вступом до краси математики. Задачі, звичайно, мають бути присутніми, але у мінімальній кількості і лише найкращі з існуючих.
2.     Курс повинен вчити міркувати, доводити. Адже математика починається і закінчується доведеннями. „Суворість” у використанні мови необхідна – це важливий аспект загальноматематичної  і в цілому загальної культури.
3.     Математика у новому курсі могла б розглядатися у контексті світової наукової і художньої культури. Вона могла б бути значно більш філософською, ніж сьогоднішня „елементарна математика”. Курс повинен відобразити не тільки математику до ХVII століття (як сьогоднішній), але й досягнення останніх трьох століть її розвитку. У тому числі математичну логіку, канторову теорію множин, основи абстрактної алгебри тощо [За матеріалами мережі Інтернет].
Курс, призначений для профілів гуманітарного напрямку, повинен сприяти перш за все становленню гуманітарної культури людини, формувати уявлення про математику як форму опису та метод пізнання дійсності, про роль математики для прогресу суспільства. Він повинен будуватись на основі широкого використання можливостей образного мислення учнів [11].
У класах філологічного, суспільно-гуманітарного, технологічного, спортивного, художньо-естетичного профілів вивчається інтегрований курс „Математика” за програмою „Математика. 10-11 класи (для класів гуманітарного напряму)” (автори М. І. Бурда, Ю. І. Мальований) [15].
При вивченні математики за програмою інтегрованого курсу дещо знижено рівень строгості обґрунтування математичних тверджень у тра­диційному його розумінні. Значна частина з них вивчається без строгого доведення на основі використання конкретних прикладів, наочних ілюстрацій, життєвого досвіду учнів.
На наочно-інтуїтивній основі вводиться та­кож переважна більшість аксіом, понять, формул. Акцент зміщено на формування в учнів уявлень про сутність математичного знання, його логічну структуру, категорії й методи ма­тематики, усвідомлення того, яке твердження підлягає доведенню, а яке не підлягає. Це, однак, не означає, що в цих класах слід взагалі відмовитися від доведення тверджень. Цього до­пустити ніяк не можна, зважаючи на незаперечну педагогічну цінність доведень для усві­домлення методів математики, розвитку мис­лення школярів, формування їхньої логічної культури.
З метою забезпечення наступності навчання й уникнення безвихідних ситуацій при зміні учнем обраного профілю навчання зміст про­грами узгоджено з базовим змістом середньої освіти з математики шляхом дотримання одна­кових змістовно-методичних ліній та єдності у трактуванні математичних понять [24].
Розглянемо деякі методичні зауваження щодо процесу викладання математики у 10-11 класах загальнокультурного напрямку.
1.     Однією з головних цілей вивчення теми “Функції, їх властивості та графіки” є розвиток графічної культури учнів. Мова йде, передусім, про читання графіків, тобто про встановлення властивостей функцій за їх графіками. Вміння читати графіки часто потрібне у практичних задачах. Наприклад, потрібно за графіком змінену величини вміти визначити моменти часу, в які ця величина набуває задане або найбільше, найменше значення, порівнювати з іншою величиною, передбачати поведінку величини “у майбутньому”, тощо. Вивчення теми повинно передбачати повторення і систематизацію знань учнів про дійсні числа, закріплення навичок розв’язання лінійних та квадратних рівнянь і нерівностей.
2.     Всі основні поняття диференціального числення доцільно вводити, як узагальнення результатів розв’язання деяких прикладних задач. Це одразу виділяє головний прикладний зміст поняття, робить його більш природним та доступним для сприймання. Більше уваги слід приділити змістовній стороні ідей і понять, їх геометричній та фізичній трактовці. В основі системи вправ на формування навичок диференціювання повинні лежати функції, що описують реальні залежності величин. Не слід захоплюватись диференціюванням штучно ускладнених виразів. Розглядаючи застосування похідної, слід передусім приділити увагу розв’язанню прикладних задач, зокрема на найбільше та найменше значення.
3.     Однією з головних особливостей викладання стереометрії повинно бути широке застосування геометричних образів, їх моделей і зображень. Учні повинні навчитися перш за все “бачити” розміщення прямих і площин, відповідні кути і відстані, а вже потім вміти обґрунтувати свої просторові уявлення, спираючись на означення, ознаки, властивості та інші твердження.
Предыдущая страница 1 ... 8 9 10 11 12 13 14 15 16 Следующая страница


Особливості вивчення математики в профільних класах у сучасних умовах

Скачать дипломную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=539&часть=13



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com