Реферат на тему "Особливості вивчення математики в профільних класах у сучасних умовах"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Диплом на тему Особливості вивчення математики в профільних класах у сучасних умовах

скачать

Найти другие подобные рефераты.

Диплом *
Размер: 209.3 кб.
Язык: украинский
Разместил (а): Шишенко Інна
Предыдущая страница 1 ... 8 9 10 11 12 13 14 15 16 Следующая страница

добавить материал

4.     У темі „Тригонометричні функції” слід продовжити дослідження функцій елементарними засобами. При вивченні тригонометричних функцій, як і інших класів функцій, доцільно приділити увагу таким завданням:
а) побудові та читанню графіків, зокрема графіків гармонічних коливань, які одержують із графіків функцій y=sin(x) i y=cos(x) за допомогою геометричних перетворень;
б) обчисленню та порівнянню значень тригонометричних виразів за допомогою тотожних перетворень, обчислювальних засобів, властивостей функцій;
в) знаходженню значень аргументу, при яких тригонометрична функція приймає задане значення.
Не слід приділяти багато уваги громіздким перетворюванням тригонометричних виразів і спеціальним методам розв’язування тригонометричних рівнянь. Необхідно вчити учнів знаходити кількість розв’язків і самі розв’язки найпростіших тригонометричних рівнянь, які належать заданому проміжку. Обернені тригонометричні функції достатньо вивчати в обсягу, необхідному для запису розв’язків тригонометричних рівнянь.
5.     Починати вивчення теми „Степенева, показникова та логарифмічна функції” доцільно з повторення степеня з раціональним показником та його властивостей. Слід дати учням уявлення про степінь з довільним дійсним показником. Акцент треба зробити на елементи моделювання реальних процесів за допомогою функцій, їх графіків та властивостей. В уявленні учнів характер реального процесу повинен асоціюватись із відповідною функцією, її графіком, властивостями. Наприклад, змінювання маси радіоактивної речовини в уявленні учнів повинна асоціюватись із функцією m=m0*ekt, k>0. Особливої уваги заслуговує показникова функція. Вона знаходить широке застосування при моделюванні процесів і явищ навколишнього світу. Логарифми як традиційний ефективний обчислювальний засіб свою роль втратили в зв’язку з широким впроваджуванням обчислювальної техніки. Однак вони необхідні при вивченні та застосуванні показникової функції, оскільки вони визначають функцію обернену до показникової. Тому логарифми дозволять виконувати розрахунки в прикладних задачах. Наприклад, при знаходженні моменту часу, в який маса радіоактивної речовини, що змінюється за законом m=m0*ekt, зменшиться у порівнянні з початковою в два рази. Крім цього, логарифмічна функція знаходить застосування для опису реального світу. Наприклад, словниковий склад мови змінюється з часом за логарифмічним законом. Ще яскравіше застосування логарифмічної функції пов’язане з математичним моделюванням музичної шкали.
6.     У практичній діяльності людини дослідження багатьох явищ неможливе без вивчення та кількісного оцінювання впливу випадкового. В зв’язку з цим математична підготовка учня повинна включати формування ймовірно-статистичного мислення, навичок побудови найпростіших математичних моделей, що враховують вплив випадку. Поняття ймовірності доцільно формувати на статистичній основі. При цьому слід звернути увагу на умову статистичної стійкості дослідів, навести приклади виявлення статистичних закономірностей. При статистичному підході до введення ймовірності події класичну ймовірність можна одержати як наслідок властивості ймовірності суми подій. Слід сформувати в учнів розуміння того, що про ймовірності події ми говоримо у двох випадках:
         а) при наявності великої кількості статистично стійких дослідів;
         б) при наявності досліду з рівноможливими наслідками.
         Для застосувань теорії ймовірностей дуже важливим є вивчення величин, що набувають різні значення в залежності від випадкових обставин, які не можна врахувати, тобто випадкові величини. Випадкову величину доцільно вводити як функцію від наслідків досліду. Слід сформувати в учнів розуміння змісту середніх показників. Вміння орієнтуватися в цих показниках допомагає людині приймати правильні рішення, адекватно сприймати інформацію, що надходить до нього. Статистичний  характер навколишніх явищ не може бути розкритий без розуміння міри мінливості, тому виникає необхідність у кількісному оцінюванні розкиду статистичних даних.
7.     У процесі вивчення теми „Об’єми та площі поверхонь геометричних фігур” повинні бути розглянуті різні методи обчислення об’ємів і площ поверхонь. Особливу увагу необхідно приділити методу розкладання, який має велике практичне значення. Його суть полягає в роздробленні тіла на частини, об’єми яких легко знайти або з них можна скласти тіло відомого об’єму. Використання аналогії між вимірюваннями площ плоских фігур і об’ємів сприятиме засвоєнню матеріалу учнями. В системі задач на обчислення об’ємів та площ поверхонь необхідно передбачити достатню кількість завдань, що потребують виконання вимірювань, а потім обчислення геометричних величин. Існують різні способи введення поняття площі поверхні тіла. Найбільш природним і придатним для всіх поверхонь, що розглядається в математиці і інтуїтивно зрозумілим для учнів, геометричне означення площі поверхні, що ґрунтується на понятті об’єму.
8.     Перед початком вивчення теми „Інтеграл та його застосування” актуалізувати відповідні опорні знання: повторити поняття похідної, фізичний, геометричний зміст. Вивчення інтегрального числення зазвичай починається з розгляду сукупності первісних даної функції, які доцільно трактувати як розв’язок диференціального рівняння у′ = f(x). Бажано поряд з цим рівнянням розглянути диференціальне рівняння y′ = ky, яке широко використовується при опису багатьох процесів. Інтеграл можна вводити як приріст первісної на заданому відрізку чи як границю інтегральних сум. При будь-якому способі викладення матеріалу доцільно якомога раніше вводити формулу Ньютона – Лейбніца. Це дозволить:
-         обчислювати визначені інтеграли з початку вивчення теми;
-         доводити основні властивості інтеграла, не спираючись на інтегральні суми, що зекономить час та зусилля;
-         урізноманітнити вправи на застосування визначеного інтеграла.
9.     Тема „Геометричні тіла і поверхні” надає великі можливості для розвитку у учнів геометричної інтуїції, просторових уявлень, формування навиків геометричного моделювання. При її вивченні не можна обмежуватись розглядом невеликого числа фігур і розв’язком в основному задач на обчислення. При введенні видів тіл доцільно використовувати конструктивні означення, тобто визначення, в яких означуваний об’єкт будується, а не виділяється із деякої сукупності за допомогою характерних ознак. Конструктивні означення тіл сприймаються учнями легше, природніше. Конструктивні означення дозволяють встановити спільність між призмами і циліндрами, пірамідами і конусами, що дає переваги при вивченні їх властивостей, при знаходженні об’ємів тіл та площ їх поверхонь. Особливої уваги заслуговують завдання на побудову перерізів тіл.
Курс математики, призначений для профілів гуманітарного напрямку
сприяє:
-         становленню загальної культури людини;
-         формуванню уявлень про математику як одну з універсальних мов, створених для опису і дослідження дійсності;
повинен:
-         враховувати роль образного мислення у процесі пізнання навколишнього світу;
-         формувати логічне мислення засобами математики [42].
Розглянемо орієнтовне тематичне планування основного курсу математики для 10 – 11 профільних класів гуманітарного напрямку [За матеріалами мережі Інтернет]. Його розраховано на 210 години учбового часу відповідно до навчального плану для класів цього профілю. При розробці робочої програми слід виходити з часу, що виділяється на предмет в даному навчальному закладі. Орієнтовний тематичний план узгоджено з навчальними засобами, що орієнтовані на профільне навчання. Цим планом передбачається сумісне вивчення геометрії та алгебри і початків аналізу. Такий підхід дозволяє якнайкраще розподілити час на вивчення окремих тем, забезпечити природні, внутрішні та міжпредметні зв’язки.
Для теми „Прямі і площини в просторі” формулюється загальна мета її вивчання, наводяться основні вимоги до рівня її вивчення, її зміст, короткі методичні рекомендації та розроблений конспект уроку, що подано у додатку Б [20; 46; 3].
Основні вимоги до рівня навчання задаються шляхом переліку навичок, якими повинні оволодіти учні. Ці вимоги визначають обов’язковий мінімальний рівень оволодіння темою і спрямовані на діяльнісний підхід в навчанні.
Методичні рекомендації нададуть певну допомогу викладачам щодо розуміння особливостей математичної підготовки для класів даного профілю, а також при виборі різних методичних шляхів і методів викладу матеріалу.
Орієнтовний тематичний план.
 
Клас

                     Назва теми
Орієнтовна кількість
годин на вивчення
матеріалу
   1
 2
                               3
4
 
 
  10
1.
Функції, їх властивості та графіки
16
2.
Похідна та її застосування
24
3.
Прямі та площини у просторі
30
4.
Тригонометричні функції
22
Резерв часу та повторення
10
Загальна кількість годин
102
 
  
 
    11      
5.
Степенева, показникова та
логарифмічна функції
20
6.
Елементи теорії ймовірностей
14
7.
Інтеграл та його застосування
14
8.
Геометричні тіла та поверхні
20
9.
Об’єми та площі поверхонь
геометричних тіл
24
Резерв часу та повторення
10
Загальна кількість годин
102

2.3. КУРС МАТЕМАТИКИ ДЛЯ КЛАСІВ ПРИРОДНИЧОГО ПРОФІЛЮ

 
Вчитель математики у процесі викладання математики має максимально враховувати профіль навчання. Розглянемо, у чому полягають особливості курсу математики природничо-наукового профілю.
Даний курс орієнтовано на учнів з науковим стилем мислення, які обрали для себе хімічний, біологічний, географічний та інші напрямки. Для цих областей науки математика відіграє роль апарата, спеціального засобу для вивчення  закономірностей навколишнього світу. Зауважимо, що математизація відповідних наук стосується лише окремих їх областей, в основному найбільш сучасних, тоді як інші області майже не використовують математичних знань. Тому даний курс має бути побудований з урахуванням того, що математика для учнів зазначеної категорії є хоча й необхідним, але не найважливішим предметом. Цей курс повинен забезпечувати оволодіння конкретними математичними знаннями, що дозволять, зокрема, виробити уявлення щодо застосування математики у профілюючій науці і достатніми для вивчення математики у вищому навчальному закладі відповідного напрямку.
Для природничих наук важливу роль відіграють у наш час кількісні характеристики реальних процесів і відповідні кількісні моделі, для дослідження яких необхідні традиційні розділи математики поряд з початками математичного аналізу і елементами теорії ймовірностей і математичної статистики [21].
Учням даного профілю рекомендовано особливу увагу приділяти формуванню обчислювальних навичок і вмінь, поєднувати вивчення алгебри і початків аналізу з обробкою даних, одержаних під час проведення лабораторних і практичних робіт на уроках фізики, хімії, біології. Цілком слушною є пропозиція приділити особливу увагу застосуванням похідної та інтеграла до розв’язування  прикладних задач, більш широко ознайомити учнів з розв’язуванням диференціальних рівнянь показникового зростання та гармонічних коливань. Наголоси в шкільному курсі математики слід робити не на розв’язанні тих чи інших диференціальних рівнянь, а на моделюванні реальних процесів за допомогою диференціальних рівнянь, тобто складанні рівнянь [9].
Курс математики для 10-11 класів природничого напряму вивчається за „Програмою з математики для 10-11-х профільних класів природничого напряму”, авторами якої є Бродський Я.С., Павлов О.Л., Сліпенько А.К., Афанасьєва О.М., із розрахунку 5 годин на тиждень (в тому числі – алгебра та початки аналізу – 3 години, геометрія – 2 години на тиждень) [8].
Курс математики, призначений для профілів природничого напрямку, забезпечуючи гармонійний розвиток образного і логічного мислення, повинен особливу увагу приділяти з’ясуванню ролі математики в сферах її застосувань. Насамперед це означає, що учні повинні оволодіти простими навичками математичного моделювання. Саме такий вид діяльності має бути головним у навчанні майбутніх інженерів, техніків, технологів, конструкторів, механіків, природознавців тощо. Досягти цього можна за рахунок зваженого компромісу між строгістю і доступністю викладення матеріалу, а також його прикладною спрямованістю.
Вивчення геометрії у 10-11 класах природничого напряму передбачається за традиційною схемою. Усі відмінності спрямовані на забезпечення прикладної спрямованості навчання, розвинення просторових уявлень. Цими обставинами визначається і розгляд видів геометричних тіл та їх властивостей. Встановлення спорідненості між циліндрами і призмами, конусами і пірамідами дозволяє, з одного боку, заощадити час, а з іншого – розширити види фігур, з якими учні ознайомляться у курсі геометрії. Вчитель має орієнтуватися на розгляд найважливіших засобів конструювання тіл, розгляд їх різноманітних властивостей, зокрема симетрії, перерізів [24].
Розглянемо деякі методичні зауваження щодо процесу викладання математики у 10-11 класах природничого напрямку.
1.     Враховуючи, що в основній школі вивчення наближених обчислень передбачається наприкінці 9-го класу, можна впевнено стверджувати, що відповідні навички, такі важливі для природничо-наукового профілю, ще не будуть сформовані в десятикласників. Тому не завадило б передбачити це в змісті матеріалу, що вивчається в 10 класі.
2.     При вивченні теми „Функції, їх властивості та графіки” необхідно перш за все розвивати у учнів вміння читати графіки. Наприклад, необхідно за графіком зміни величини вміти визначати моменти часу, в які ця величина приймає задане, найбільше чи найменше значення, порівнювати з іншою величиною, прогнозувати поведінку величини „в майбутньому” тощо. Для формування таких навичок необхідно навчити учнів за графіком функції встановлювати її неперервність, точки розриву, проміжки зростання та спадання, знакосталості, найбільше та найменше значення. При цьому необхідно приділити увагу побудові графіків функцій за допомогою геометричних перетворень.
3.     Поняття границі та неперервності функції формуються на основі наочно-інтуїтивних уявлень про них. Ці поняття слід пов’язувати з математичним описом фізичних процесів (неперервних та розривних). Обчислення границь слід розглядати лише у об’ємі, необхідному для формування поняття границі та неперервності. При вивченні властивостей неперервних функцій особливу увагу слід приділити властивості неперервної на відрізку функції, що приймає на його кінцях значення різних знаків (ілюструючи цю властивість на графіку). На цій властивості засновано метод інтервалів для розв’язання нерівностей.
4.     При формуванні поняття границі, при вивченні властивостей границі, неперервності, для „відкриття” властивостей функції ефективно може бути застосований чисельний експеримент.
5.     Всі основні поняття диференціального числення природно вводити як узагальнення результатів розв’язання деяких прикладних задач. Це одразу виділяє головний прикладний зміст поняття, робить його більш природним та доступним для сприймання. Дуже важливо, щоб отримані знання учні могли застосувати до характеристики реальних процесів, для введення нових, більш змістовних понять природничих та технічних наук (миттєвої сили струму, питомої теплоємності, лінійної густини тощо). При формуванні поняття похідної слід виробляти розуміння того, що похідна моделює не тільки швидкість механічного руху, але й швидкість змінювання багатьох процесів. Учні повинні вміти за допомогою похідної знаходити швидкість та прискорення нерівномірного руху, кутову швидкість обертання тіла, силу змінного струму, лінійну густину неоднорідного стержня тощо. В основі системи вправ на формування навичок диференціювання повинні лежати функції, що описують реальні залежності величин. Доцільно розвити навики побудови ескізу графіка похідної за графіком функції і навпаки. Використання теореми Лагранжа спрощує доведення ознак монотонності та екстремуму. Достатньо обмежитись її наглядною геометричною ілюстрацією.  Розглядаючи застосування похідної, слід передусім приділити увагу розв’язанню прикладних задач, зокрема на найбільше та найменше значення.
Предыдущая страница 1 ... 8 9 10 11 12 13 14 15 16 Следующая страница


Особливості вивчення математики в профільних класах у сучасних умовах

Скачать дипломную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=539&часть=14



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com