Реферат на тему "Особливості вивчення математики в профільних класах у сучасних умовах"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Диплом на тему Особливості вивчення математики в профільних класах у сучасних умовах

скачать

Найти другие подобные рефераты.

Диплом *
Размер: 209.3 кб.
Язык: украинский
Разместил (а): Шишенко Інна
Предыдущая страница 1 2 3 4 5 6 7 8 9 ... 16 Следующая страница

добавить материал

4. Площини перетинаються по прямій а. Пряма b, що лежить у площині,  перетинає площину в точці А. Де лежить точка А?
5. Точка А і В та пряма СD не лежать в одній площині. Яке взаємне розміщення прямих CD i AB?
                Завдання на розуміння мови математичних символів
1.     Дано вирази
 
1)    Серед цих виразів знайдіть помилкові.
2)    Який із записів відповідає висловленню:
а) площини перетинаються по прямій а;
б) точка А є точкою перетину площини   і прямої а?
2. Як можуть розміщатися прямі а та АВ у площинах  і ? Запишіть мовою символів.
ІІІ. Домашнє завдання.
Вивчити опорний конспект, розв’язати задачі.
Запишіть висловлення мовою символів:
а)     точка А перетинає площину   в точці В;
б)    прямі КА і КВ перетинаються в точці К;
в)     пряма КН перпендикулярна до прямої МС. На перетині прямих лежить точка К.
Тестові завдання
1.     а) Дано куб АВСДА1В1С1Д1. яка з точок не лежить у площині квадрата АВСД?
1) М;                    2) К;                     3) N;                         4) Р.
б) Дано тетраедр АВСS. Яка з точок не лежить у площині трикутника АВС?
1) А;                    2) Z;                  3) Y;                             4) X.
2.  а) Якій із вказаних площин куба не належить точка А?
     1) ВСД;               2) А1С1С;       3) ВВ1А1;                       4) ВСС1.
б) Якій із вказаних площин тетраедра належить точка У?
1) ASB;                   2) ASC;          3) BSC;                        4) ZBC.
3. У просторі дано прямі а та в, які перетинають­ся в точці С. Скільки різних площин можна провес­ти через ці прямі?
1) дві;                  2) безліч;             3) одну;                        4) жодної.
4. а) Площини тетраедра АSС і АSВ перетинаються по прямій:
     1) AS;                    2) AB;             3) AC;                             4) SC.
б) Площини куба АВС і В1ВД перетинаються по прямій:
     1) ВС;                     2) ВД;            3) АВ;                              4) ВВ1.
5.     а) Площину ABS тетраедра можна задати прямими:
1) АВ і АS;               2) АВ і АС;                              3) АС і ВС.
б) Площину грані АА1Д1Д куба АВСДА1В1С1Д1 можна задати прямими:
1) Д1Д і ДС;              2) АД і АВ;                 3) АА1 і АД;        4) А1Д1 і Д1С1.
  

Для класів природничого профілю
 Тема. Прямі та площини у просторі
МЕТА
Мета теми – закласти основи для навчання учнів конструюванню геометричних тіл, дослідженню їх властивостей і вимірюванню геометричних величин, що пов’язані з ними; продовжити реалізацію ідеї моделювання реальних об’єктів і відношень між ними за допомогою найпростіших просторових геометричних фігур і відповідних математичних відношень; сприяти розвитку в учнів навичок логічного виведення, уявлень про аксіоматичний метод.
ОСНОВНІ ВИМОГИ
В результаті вивчення теми учні повинні вміти:
-         встановлювати у просторі взаємне розміщення прямих і площин, зокрема паралельність і перпендикулярність прямих, прямої і площини, двох площин;
-         будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);
-         обчислювати відстані і кути у просторі;
-         застосовувати відношення паралельності і перпендикулярності, а також вимірювання відстаней і кутів у просторі для опису об’єктів фізичного простору.
ЗМІСТ ТЕМИ
Аксіоми стереометрії та найпростіші наслідки з них.
Взаємне розміщення двох прямих у просторі. Паралельність прямої та площини. Паралельність площин. Паралельне проектування та його властивості. Зображення фігур у стереометрії.
 Перпендикулярність прямої і площини. Перпендикулярність площин. Ортогональне проектування. Вимірювання відстаней у просторі. Вимірювання кутів у просторі.
МЕТОДИЧНІ РЕКОМЕНДАЦІЇ
Однією з головних особливостей викладання стереометрії повинно бути розумне поєднання наочно-геометричного та логічного у викладі. При вивченні основних понять і фактів, пов’язаних зі взаємним розміщенням прямих і площин, слід віддати перевагу синтетичному, наочно-геометричному викладенню, а потім використовувати вектори та координати для поглиблення та розширення знань учнів при вивченні прямих і площин у просторі. Такий підхід зберігає логічні зв’язки між зазначеними питаннями. Адже для вивчення поняття вектора у просторі і його властивостей використовується паралельність прямих і площин, для введення координат у просторі – перпендикулярність прямої і площини, перпендикулярність площин тощо.
Формування просторових уявлень учнів є головним завданням даної теми. Тому важливе місце треба відвести їх навчанню зображати просторові фігури на площині і застосуванню цих зображень до розв’язування задач. І зробити це доцільно якомога раніше.
Для ілюстрації розглядуваних понять і теорем доцільно використовувати найпростіші тіла, зокрема куб і тетраедр.
У більшості навчальних посібників з геометрії відношення паралельності прямих і площин розглядається раніше перпендикулярності. Цей підхід дозволяє більш чітко і повно подати ідеї аксіоматичної побудови геометрії, сконцентрувати увагу учнів на задачах на доведення і побудову, зокрема на проекційному кресленні.
Особливу увагу необхідно приділити реалізації прикладної спрямованості викладання теми. Головним в цьому є формування чітких уявлень про взаємовідношення властивостей геометричних об’єктів (прямих, площин) і відношень між ними і предметами навколишнього середовища.
При вивченні стереометрії постійно доводиться спиратися на зв’язок між планіметричними та стереометричними поняттями та фактами. З одного боку, необхідно максимально використовувати аналогію між ними у ряді випадків. А з іншого боку, необхідно попередити необґрунтоване перенесення „плоских” результатів у простір.
Конспект уроку
Тема уроку. Основні поняття стереометрії. Просторові тіла. Аксіоми стереометрії.
Мета уроку: ознайомити учнів з основними поняттями стереометрії, сприяти формуванню в учнів уявлень про найпростіші просторові тіла, про аксіоматичний метод, розвитку навичок логічного виведення, а також застосування аксіом стереометрії та наслідків з них до розв’язування задач.
Освоївши матеріал уроку учні повинні:
знати:
-         що вивчає стереометрія;
-         що є найпростішими фігурами простору;
-         аксіоми стереометрії;
-         теореми про існування та єдність площини, що проходить:
а)          через пряму та точку, яка їй не належить;
б)         через три точки, що не лежать на прямій.
вміти:
-         зображати та знаходити на малюнках прямі і площини;
-         застосовувати аксіоми стереометрії та наслідки з них до розв’язування задач;
-         зображати та знаходити на малюнках паралельні, мимобіжні прямі та прямі, що перетинаються.
Хід уроку
І. Вступ
У 10 класі ви починаєте вивчати новий розділ геометрії – стереометрію. У молодших класах ви вивчали такий розділ, як планіметрія, тобто всі фігури (точка, пряма, трикутник, трапеція тощо) ви вивчали на площині. Саму ж площину як фігуру не розглядали.
 
ІІ. Пояснення нового матеріалу
Основні поняття стереометрії
Стереометрія – це розділ геометрії, що вивчає фігури у просторі. Найпростішими фігурами простору є:
-         точка: А, В, С,...
-         пряма: а, в, с,...
-         площина: ,..., (АВС).
Площину ми уявляємо собі як рівну поверхню кришки столу і тому будемо зображати її у вигляді паралелограму.
А
Параллелограмм: А
площина (АВС)
Взагалі площини позначаються грецькими літерами : . Площина, як і пряма, нескінченна. На малюнку ми позначаємо тільки частину площини, але уявляємо її необмежено продовженою у всі сторони.
площина
Введемо основні позначення:
АВ – пряма;
[АВ] – відрізок;
[АВ) – промінь з початком в точці А;
|АВ| – довжина відрізку;
А є а                             належить
         – точка А                               прямій а;
А  а                   не належить
(АВС) – площина;
А є                    належить
          – точка                                  площині ;
А                             не належить
АВ                 належить
          – пряма АВ                 площині ;
АВ                 не належить
{А; а}  – точка А та пряма а належать площині ; точка А та пряма а визначають площину ;
а ∩ в = К – прямі а і в перетинаються в точці К;
а  = N – пряма а і площина  перетинаються в точці N;
 = АВ – площини  і  перетинаються по прямій АВ.
Аксіоми стереометрії
Властивості геометричних фігур в стереометрії ми будемо встановлювати шляхом доведення теорем. Але щоб доводити теореми, нам необхідно спиратися на деякі вихідні твердження. Такі твердження називають аксіомами. Оскільки на цих твердженнях ґрунтується доведення теорем стереометрії, то вони отримали назву – група аксіом С.
С1. Яка б не була площина, існують точки, що належать цій площині, і точки, що не належать цій площині.
                                                       
С2. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, що проходить через цю точку.
                                                        }
С3. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, і притому тільки одну.
                                                        а ∩ в| {а, в},
                                                         – єдина.          
Таким чином, група аксіом С, а також ті аксіоми, що ви вивчали у молодших класах у розділі планіметрія, і складають систему аксіом стереометрії.
Зауважимо, що не всі аксіоми планіметрії механічно переносяться до системи аксіом стереометрії. Прикладом тому є аксіома ІV: пряма розбиває площину на дві півплощини. Проілюструємо її на рисунку.
                                         Як бачимо, аксіому ІV слід формулювати тепер таким чином: пряма, що належить площині, розбиває її на дві півплощини.
Також нагадаємо аксіому І планіметрії, оскільки вона знадобиться нам для доведення теорем.
І. Яка б не була пряма, існують точки, що належать цій прямій, і точки, що не належать цій прямій. Через будь-які дві точки можна провести пряму, і притому тільки одну.
Наслідки з аксіом
Теорема 1. Через пряму і точку, що належить даній прямій, можна провести площину, і притому тільки одну.
                                                Дано: пряма АВ, точка С  АВ.
                                                Довести: 1) існує  {АВ, С};
                                                                2)  єдина.
Доведення
1) Проведемо пряму АС (аксіома І). АС і АВ різні, оскільки С  АВ. За аксіомою С3: АВ і АС визначають площину .
2) Доведемо єдність (методом від супротивного).
Нехай існує ще одна площина , що проходить через АВ і точку С. За аксіомою С2: точки А, В і С повинні лежати на одній прямій. Це суперечить умові, що С   АВ. Припущення не вірне.
–       Маємо дві точки А і С, яку аксіому планіметрії можна використати?
–       Погляньте на малюнок: маємо дві прямі, що перетинаються. Яка аксіома тут працює?
–       Яким методом в геометрії доводиться єдність чого-небудь?
–       З якою умовою задачі ми отримали протиріччя?
         Теорему доведено.
Теорема 2. Якщо дві точки прямої належать площині, то вся пряма належить цій площині.
А  |
         .
В  |
Опорна задача. Якщо дві площини мають дві спільні точки, то вони перетинаються по прямій, що містить ці точки.

                  

Наслідок.                               Пряма і площина        
не перетинаються
(немає спільних точок)                                                                  перетинаються   
                                 (мають одну спільну точку)                 
                                                                  (принаймні дві
спільні точки)
Теорема 3. Через три точки, що не лежать на одній прямій, можна провести площину, і притому тільки одну.
                                                       Дано:  а.
                                                       Довести: 1) існує ;
                                                                       2)  – єдина.
Доведення.
1) Проведемо прямі АВ і АС (аксіома І), вони різні, оскільки  а. За аксіомою С3: через прямі АВ і АС можна провести площину .
2) Доведемо єдність.
За теоремою 2: . За аксіомою С3 така площина єдина.
Теорему доведено.
Побудова перерізів просторових фігур
Перерізом многогранника називається многокутник, що утворюється при перетині многогранника з площиною.
Щоб будувати прості перерізи, слід вміти будувати:
1) лінію перетину двох площин
Для цього знаходять дві точки шуканої прямої і через них проводять пряму
2) точку перетину прямої і площини
Для цього знаходять у даній площині пряму, що перетинає дану пряму; точка перетину цих прямих є шуканою. Ці прямі повинні лежати в одній площині
 
ІІІ. Практичне закріплення нового матеріалу
Задача 1. Дано зображення піраміди SABC. Побудувати переріз піраміди площиною , що проходить через ребро АВ і точку К.
Розв’язання
При розв’язуванні використаємо опорну задачу.
                                                        1) К є (SCB),         
    K є ,
    В є (SCB),
    B ,
2) К є (SCA),      
    K ,
         А є (SCA),
    A ,
3) ΔКАВ – шуканий переріз.
Задача 2. Точка М – середина ребра АА1 куба АВСДА1В1С1Д1. побудувати точку перетину прямої Д1М з площиною (АВС).
Розв’язання
                                                        1) МД1  (АА1Д1),
                                                            АД  (АА1Д1),
                                                            АД  (АА1Д1),
                                                        2) АД ∩ МД1 = К,
3) точка К – шукана.
ІV. Домашнє завдання. Підсумки уроку
Коментарій домашнього завдання: вивчити конспект, № 1, № 7 (за підручником Погорєлова А. В. Геометрія 7-11 кл., Просвещение, 1989), розв’язати задачу.
Задача. Побудувати переріз куба АВСДА1В1С1Д1 площиною, що проходить через точку М – середину ребра АА1 та діагональ В1Д1. Обчислити периметр перерізу, якщо ребро дорівнює 10 см.
Тестові завдання
1. а) Які з наведених фігур можуть бути тільки плоскими, а які — тільки просторовими?
1) круг; 2) куля; 3) квадрат; 4) куб; 5) прямокут­ний паралелепіпед; 6) ромб; 7) піраміда; 8) циліндр.
б) Наведіть приклади плоских та просторових фігур з навколишнього оточення.
2. Назвіть вершини, ребра та грані многогранників, зображених на малюнках.
а)                                                           б)
3. Дано зображення куба АВСДА1В1С1Д1. Вкажіть:
а) точки, що не належать грані АА1ДД1;
б) точки, що  належать грані ВВ1С1С.
4. Дано зображення куба АВСДА1В1С1Д1. Вкажіть:
а) пряму перетину грані АА1Д1Д і нижньої основи;
Предыдущая страница 1 2 3 4 5 6 7 8 9 ... 16 Следующая страница


Особливості вивчення математики в профільних класах у сучасних умовах

Скачать дипломную работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=539&часть=4



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com