Реферат на тему "Общие принципы технологии криогенного охлаждения мяса индейки"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Курсовая на тему Общие принципы технологии криогенного охлаждения мяса индейки

скачать

Найти другие подобные рефераты.

Курсовая *
Размер: 65.83 кб.
Язык: русский
Разместил (а): Юлия
Предыдущая страница 1 2 3 4 5 6 Следующая страница

добавить материал

 
          Так как многие полиненасыщенные кислоты, необходимые для расчета коэффициента отсутствуют, то подсчитаем его для полосатого тунца:
С20:2 = 6,520                     С20:5 = 5,160
С20:3 = 1,360                     С22:5 = 5,940
С20:4 = 0,420                     С22:6 = 15,54
КЭМ = 0,420/34,560 = 0,012 (16)
           Липиды, входящие в состав мышечных волокон, выполняют функции двоякого рода. Часть их, главным образом фосфолипиды, является пласти-
ческим материалом и входит в структурные элементы мышечного волокна – миофибриллы, клеточные мембраны, прослойки гранул.
          В состав миофибрилл входят различные глицерофосфолипиды, многие из них способствуют проявлению активности ряда ферментов. Особенно большим содержанием фосфолипидов отличается саркоплазматический рети-
кулум и сарколеммные мембраны. Однако общее содержание фосфолипидов в сарколеммной мембране значительно ниже, чем в митохондриях, причем качественный состав их в ней не отличается от состава субклеточных структур.
          Другая часть липидов выполняет роль резервного энергетического материала, такие липиды содержатся  в саркоплазме в виде мелких капелек на полюсах митохондрий. В большом количестве липиды содержатся в межклеточных пространствах, между пучками мышц в соединительных прослойках (13).
         
Состав углеводов
 
 
          Одним из основных углеводов мышечной ткани является гликоген – важнейший энергетический материал. он расходуется при мышечной работе и накапливается при отдыхе. Содержание его зависит от тренированности и упитанности птицы, а также физиологического состояния.
          Мышечный гликоген представляет собой сильно разветвленный поли-
сахарид, построенный из сотен молекул  a-глюкозы. молекулярная масса его равна 1*10^6. Большая степень разветвленности мышечного гликогена необ-
ходима, поскольку действию ферментов подвергаются концы молекулы; чем больше свободных концов, тем быстрее может быть использована молекула гликогена или быстрее может быть заново синтезирована во время таких периодов клеточного метаболизма, когда происходит его регенерация. В пе-
риод распада молекул гликогена наряду с последовательным разрушением его боковых цепей под действием эндоамилаз происходит и образование его частей – «затравок», которые также могут затем расти за счет присоединения глюкозы. Мышечная ткань отличается высокой концентрацией ферментов и факторов системы, синтезирующей гликоген.
          В мышечных волокнах обнаруживается определенная связь гликогена с миофибриллами. Наблюдается локализация гликогена у анизотропных дис-
ков и он не обнаруживается в изотропных. Кроме того, гликоген более или менее равномерно распределен в саркоплазме ( с преобладанием в около-
ядерной саркоплазме). Возможно, что связь гликогена с миозином анизотропных дисков миофибрилл и миогеном саркоплазмы обеспечивает необходимый темп расщепления полисахарида при его гликолитическом рас-
паде. В этих превращениях более лабильной является фракция легкораство-
римого гликогена. Наряду с этим труднорастворимый гликоген метаболичес-
ки не инертен и является резервом, находящимся в состоянии непрерывного обновления.
          В процессе интенсивной мышечной работы гликоген подвергается ана-
эробному гликолитическому распаду с образованием молочной кислоты. В процессе превращения гликогена образуются фосфорные эфиры гексоз и триоз, пировиногралная кислота и другие продукты распада, однако количес-
тво их относительно невелико.
          Гликоген распадается в мышцах не только фосфорилитическим, но и гидролитическим (амилолитическим) путем под дествием a-амилазы, нейтра-
льной g-амилазы, олиго-1,4 – 1,4-глюкантрансферазы и амило-1,6-глюкозида-
зы. В качестве конечных продуктов такого распада гликогена образуются глюкоза, линейные и разветвленные олигоглюкозиды. Дальнейшее расщеп-
ление олигоглюкозидов осуществляется специфичными a-олигоглюкозида-
зами (13).  
Витамины
 
 
          Витамины представлены в таблице 7(20).
Таблица 7
Витамины в 100 г. продукта (тушки индейки первой категории)
Витамин А, мг……………………0,01
b-каротин, мг………………………сл.
Витамин Е, мг……………………0,34
Витамин В6, мг…………………..0,33
Витамин В12, мкг…………………-
Биотин, мкг………………………..-
Витамин С, мг……………………..-
Ниацин, мг………………………...7,8
Пантотеновая
 кислота, мг……………………….0,65
Рибофлавин, мг…………………..0,22
Тиамин, мг………………………..0,05
Фолацин, мкг……………………..9,6
Холин, мг…………………………139
 
Свойства воды, входящей в состав сырья
 
 
          Содержание воды в мышцах колеблется в зависимости от возраста птицы: чем она моложе, тем больше влаги в мышцах. Неодинаково содержание воды в различных группах мышц и уменьшается по мере увеличения содержания жира. Вода, входящая в состав мышечной ткани, не-
однородна по физико-химическим свойствам и роль ее неодинакова.
          Различают две формы воды – свободную и связанную. Свободная жидкая вода имеет квазикристаллическую, тетраэдрическую координирован-
ную структуру. Она ограничена степенями свободы за счет образования водородных связей между отдельными молекулами. Этим объясняется высо-
кая диэлектрическая постоянная воды. С помощью тяжелой воды и примене-
ния метода ядерно-парамагнитного резонанса установлено, что свободная во-
да мышечной ткани также имеет явно выраженную подобную координиро-
ванную, тетраэдрическую структуру. Другая часть воды находится в связан-
ном состоянии – ионная и гидратная вода, активно удерживаемая главным образом белковыми веществами и некоторыми другими химическими компонентами клеток (например, углеводами, липидами). Такое состояние объясняется наличием химической или физико-химической связи между водой и веществом. Около 70% воды ткани ассоциируется с белками мио-
фибрилл.
          Гидратация белковых молекул обусловлена полярными свойствами мо-
лекул воды (дипольным строением) и наличием функциональных групп (аминных, карбоксильных, гидроксильных, пептидных и др.) в молекуле бел-
ков. При этом диполи воды образуют гидратные слои вокруг активных групп
и белковой молекулы в целом. При гидратации часть воды, связываясь с гидрофильными группами белка, располагается вокруг белковых молекул в виде мономолекулярных слоев. Первые слои удерживаются довольно прочно, а последующие – значительно слабее, располагаясь в виде рыхлого диффузного облака. Окружая функциональные группы соседних белковых цепей, связанная вода существенно влияет на стабилизацию их простран-
ственной конфигурации, и, следовательно, определяет их функциональную деятельность.
          На некоторых участках молекул белков могут образоваться водные мостики.
          Связанная вода удерживается белком довольно прочно. Она характери-
зуется рядом специфических свойств: более низкая точка замерзания, мень-
ший объем, отсутствие способности растворять вещества, инертные в химическом отношении ( находящиеся в небольших концентрациях) – сахара, глицерин, некоторые соли. Связанная вода составляет 6-15% от масс-
сы ткани.
          За слоем гидратной воды расположены слои относительно слабо удер-
живаемых молекул воды, представляющей собой раствор различных веществ, - это свободная вода. В ткани ее содержится от 50 до 70%. Удерживается она большей частью за счет осмотического давления и адсорб-
ции структурами клеток – сеткой белковых мембран и белковых волокон, а также в результате заполнения макро- и микрокапиллярных внутриклеточ-
ных и межклеточных пространств ткани. Поэтому такую воду рассматривают как иммобилизованную воду, которая в значительном количестве сравните-
льно легко может быть удалена из ткани (13).
 
 
         
Характеристика ферментов сырья
 
 
          Мышечная ткань осуществляет свои функции благодаря активному участию ферментных систем, специфически локализованных в структурах ткани. Ферментные системы обеспечивают получение большого количества энергии, необходимой для осуществления мышечной деятельности. Мышечные клетки характеризуются большой концентрацией ферментов гли-
колиза, а также ферментов числа трикарбоновых кислот и дыхательной цепи.
          Считается, что осуществление гликолиза и связанное с ним выделение энергии не нуждается в высокой дифференциации структурно-ферментного аппарата,  а поэтому протекает в матриксе саркоплазмы. Вместе с тем разли-
чные воздействия на мышечную ткань повышают интенсивность гликолити-
ческих процессов, что может свидетельствовать о выходе ферментов из ограничивающих структур и их активации.
          В матриксе саркоплазмы содержатся многие ферменты синтеза белков, липидов и полисахаридов.
          Аэробное окисление продуктов обмена происходит в митохондриях (саркосомах). Большинство ферментов, участвующих в процессах окисления, обнаруживается именно в этих органеллах. Во всех мышечных клетках мито-
хондрии занимают значительную часть саркоплазмы, и в каждой из них го-
раздо больше крист ( складчатые внутренние мембраны митохондрий), чем в менее многочисленных митохондриях  других клеток. процессы, протекаю-
щие в складчатых внутренних мембранах митохондрий при участии локализованных в них ферментных систем, играют основную роль в снабже-
нии мышечной клетки энергией.
          Разные мышцы в зависимости от функциональных особенностей харак-
теризуются различным соотношением концентрации ферментных систем, ка-
тализирующих анаэробные и аэробные превращения. Так, в красных мышеч-
ных волокнах содержится больше митохондрий, чем в белых; активность дыхательных ферментов в них в 6 раз больше, чем в белых. В белых мышцах интенсивность анаэробного гликогенолиза примерно в 2 раза выше, чем в красных.
          Интенсивность окисления жиров в мышцах относительно невелика, но после углеводов они являются важнейшим источником энергии. При недос-
татке углеводов в процессы обмена вовлекается большее количество жиров.
К циклу трикарбоновых кислот непосредственно примыкают реакции окис-
ления жирных кислот. В митохондриях обнаружены ферменты, окисляющие жирные кислоты.
          Такие процессы обмена аминокислот, как дезаминирование и переами-
нирование, также примыкают к циклу трикарбоновых кислот. Многие ферменты дезаминирования аминокислот обнаружены в митохондриях. Син-
тез многих аминокислот, как и «непрямое» их дезаминирование, осуществля-
ется реакциями переаминирования. Переаминирование аминокислот связано
с активностью аминофераз, содержащихся в митохондриях.
          Вместе с тем ферменты переаминирования обнаружены также в жидкой части саркоплазмы.
          Таким образом, в митохондриях мышц содержатся сложные фермен-
тные системы, составляющие единый комплекс, к которому примыкают фер-
менты других компонентов клетки. Изменение физико-химического состоя-
ния этих органелл сказывается на активности их ферментов. Деструкция ми-
тохондрий нарушает координированное осуществление сложного комплекса взаимосвязанных процессов обмена, происходящих в них.
          Саркоплазматический ретикулум содержит, кроме активируемой иона-
ми магния АТФ-азы, также обладающую очень высокой активностью АМФ-аминогидролазу.
          В ядрах содержатся гликолитические, окислительные, гидролитические ферменты, а также ферменты белкового синтеза. Кроме того, в ядрах имеют-
ся ферменты синтеза нуклеиновых кислот (ДНК-полимераза и РНК-полиме-
раза).
          С миофибриллами связана основная АТФ-азная активность, которой, как известно, обладает миозин и она зависит от присутствия катионов Na , K ,
Li , Ca , Mg , NH . Очищенный миозин активируется ионами кальция и ингибируется ионами магния. Наряду с этим имеется также растворимая АТФ-аза, отличная от миозина, содержащаяся в различных структурах клет-
ки: в ядрах, митохондриях и мембранных элементах саркоплазмы. Это АТФ-аза активируется ионами магния.
          АТФ-азной активностью обладает определенная часть молекулы мио-
зина – его компонент – Н-миозин. Многократно переосажденный миозин наряду с АТФ-азной активностью АМФ-аминогидролазы, ацетилхолинэсте-
разы. Активность этих ферментов сосредоточена в L-миозине. Кроме того, миофибриллы характеризуются глютаминазной активностью. В проявлении активности ферментов в миофибриллах играют роль фосфолипиды. При де-
липировании миофибрилл в них резко снижается активность АТФ-азы, АМФ-аминогидролазы и ацетилхолинэстеразы.
          В сарколеммной мембране обнаружено наличие АМФ-аминогидролазы и весьма активной ацетилхолинэстеразы.
          К рибосомным относят ферменты, принимающие участие на тех стади-
ях синтеза белка, которые происходят на рибосомах. Эти ферменты участву-
ют в прикреплении, передвижении и отделении от рибосомной поверхности И-РНК и Т-РНК; перенос недостроенных полипептидов от одной молекулы Т-РНК и сопутствующее образованию пептидной связи. К рибосомным ферментам относят также рибонуклеазу 1, ГТФ-азу и др.
          Лизосомы содержат клеточные гидролазы: кислую рибонуклеазу, дезоксирибонуклеазу, кислую фосфатазу, катепсины, эстеразы, гликозидазы. В живой клетке эти ферменты могут действовать в основном на фагоцити-
рованный материал, попавший внутрь лизосомы. Мышечной клетке это необходимо для обновления ее важнейших структур и компонентов. Если целостность лизосомы нарушена, то гидролазы высвобождаются и перевари-
вают компоненты клетки.
          Наличие в лизосомах липопротеидной мембраны надежно удерживает гидролитические ферменты и предотвращает переваривание субстратов мы-
шеечного волокна тотчас после убоя. Однако в дальнейшем, под воздействи-
ем различных факторов,  происходит высвобождение гидролаз
Структурно-механические свойства сырья
 
 
 
          Структурно-механические характеристики представляют собой фундаментальные физические свойства продуктов. Они проявляются при механическом воздействии на обрабатываемый продукт и характеризуют его сопротивляемость приложенным извне усилиям, обусловленную строением и структурой продукта. Эти характеристики используются для расчета процес-
сов в  рабочих органах машин с целью определения их механических пара-
метров (геометрических, кинематических и динамических); они отражают существенные аспекты качества продуктов. Кроме того, структурно-механи-
ческие характеристики учитываются при расчете различных физических процессов (22).
          Сдвиговые характеристики.
          В я з к о  с т ь  к р о в и. Кровь состоит из плазмы и форменных элемен-
тов. Плазма составляет 60% объема крови и представляет собою сложный раствор, содержащий белки, глюкозу, холестерин и его эфиры, фосфатиды, жиры и свободные жирные кислоты, небелковые азотистые и минеральные вещества. Форменные элементы крови (40%) представлены красными кровя-
ными шариками (эритроциты), белыми (лейкоциты) и кровяными пластинка-
ми (тромбоциты). Общее представление о составе крови дано на рис. (1).
Сухие вещества плазмы крови (7).
Б
М
Л
С
Аз
Ф
Г
А
 
Рис. (1).  Б – Белки, 7,5%; Ф – Фибриноген, 0,2%; Г – Глобулины, 2,8-3,0%; А – Альбумины, 4,3%;  М – Минеральное вещество, 1%; Л – Липиды, 1%; С – Сахар, Аз – Азотистые вещества.
  При  увеличении концентрации сухих веществ вязкость крови возрастает и уменьшается при увеличении температуры, что наглядно видно из табл. 8-10. В таблицах приведены данные исследований пищевой стабилизированной крови и плазмы, полученной из этой же крови промышленным сепарирова-
нием. Концентрирование осуществляется ультрафильтрацией на лаборатор-
ной установке. Вязкость измеряли с помощью вискозиметра Гепплера и рео-
вискозиветра Ротовиско.
Таблица 8
Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и температуры
Концентрация сухих веществ, кг на 1 кг крови
Температура,  С
10
20
30
40
0,261
92
59
46
36
0,213
31
19
14
10
0,182
15
10
7
5
0,152
11
7
6
4
 
 
 
 
 
 
          Данные таблицы 8 получены при градиенте скорости 380 с ^(-1), а
табл. 9 – при температуре 20 С. Следует отметить, что при концентрации 0,261 кровь представляет собой типичную степенную жидкость.
Предыдущая страница 1 2 3 4 5 6 Следующая страница


Общие принципы технологии криогенного охлаждения мяса индейки

Скачать курсовую работу бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=638&часть=2



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com