Реферат на тему "Pentium IV"




Реферат на тему

текст обсуждение файлы править категориядобавить материалпродать работу




Реферат на тему Pentium IV

скачать

Найти другие подобные рефераты.

Реферат *
Размер: 97.35 кб.
Язык: русский
Разместил (а): Зайцев Алексадр ака AZbest
Предыдущая страница 1 2 3

добавить материал

Длина конвейера Intel Pentium 4 увеличена до 20 этапов. Хорошо ли это? Для примера - сегодняшний Pentium III имеет 12-этапный конвейер, Athlon - 10-ти. Но при этом не стоит забывать один общеизвестную истину - чем длиннее конвейер, тем легче наращивать тактовую частоту, но, соответственно, тем меньшая производительность приходится на каждый полученный мегагерц :-(. Выходит палка о двух концах.
 
Простой конвейера: старые проблемы, умноженные на новые частоты
Приведенное ранее описание работы механизма предсказания ветвлений осталось все же немного незавершенным: мы закончили его на "победном" варианте: ветка предсказана правильно, процессор начал декодирование команд "наперед", переход осуществился к "угаданному" адресу, находящиеся там команды готовы к исполнению (или даже уже частично исполнены). Но что происходит, если "штатный предсказатель" все же ошибся? А происходит "воистину страшное" -- весь конвейер приходится очищать от ненужных команд и в срочном порядке начинать готовить к исполнению новые, находящиеся еще в памяти и совсем по другому адресу. Естественно, ядро CPU во время всего этого "разбора полетов" просто исполняет холостой цикл, так как ни подготовленных данных, ни команд к нему не поступает. И наверняка наш читатель уже догадался сам об основной проблеме гиперконвейерной архитектуры нового процессора: чем длиннее конвейер, тем больше работы идет насмарку и тем дольше придется ждать, пока он будет "вычищен" от непонадобившихся команд и снова заполнен нужными. К тому же высокая частота работы в данном случае автоматически означает, что с момента ошибки в предсказании перехода до момента ее обнаружения "лишней" работы процессор успеет сделать больше. Да, такова реальность: не всегда высокая частота означает высокое быстродействие. Однако не все так плохо -- естественно, проблема эта была известна еще задолго до выхода процессора, и минимизации потерь было уделено серьезное внимание.
Предсказания должны сбываться!
Модули RIMM и "заглушки" CRIMM).
 
Подпись: Модули RIMM и "заглушки" CRIMM).

                Применительно к соответствующему блоку процессора данная фраза выглядит как самое что ни на есть благое пожелание. И разработчики Pentium 4 сделали все от них зависящее, чтобы так это и происходило. Блок предсказания ветвлений нового CPU подвергся значительным модификациям -- размер буфера, в котором хранятся адреса возможных переходов (BTB -- Branch Target Buffer), увеличился до 4 KB (512 байт у Pentium III), кроме того, сам алгоритм был усовершенствован и теперь учитывает большее количество возможных факторов. В итоге, по заявлениям разработчиков, результативность предсказаний увеличилась на треть, и сейчас их точность достигает 94%.
Усовершенствованное внеочередное исполнение
Для того чтобы найти команду, претендующую на внеочередное исполнение, нужно иметь место, где ее искать. Анализировать "наперед" код, содержащийся в памяти, -- операция накладная, да и медленная. Поэтому у всех современных процессоров есть так называемая "резервация" (Reservation Station), в которой хранятся декодированные и готовые к исполнению команды. У Pentium 4 соответствующий блок называется "окном команд" (Instruction Window), но, по сути, эти два наименования обозначают одно и то же -- буфер для инструкций. Окно команд Pentium 4 тоже существенно выросло, теперь для внеочередного исполнения процессору предлагают "на выбор" более 120 инструкций (точные данные еще не опубликованы).


Удвоенная внутренняя частота ALU
Арифметико-логические блоки (Arithmetical Logic Units) в Pentium 4 работают на удвоенной частоте. Так, к примеру, ALU у Pentium 4 1,5 GHz функционирует на частоте 3 GHz! Это позволяет выполнять многие операции фактически даже не за один, а за полтакта, или две операции за такт. А поскольку таких блоков у Pentium 4 два - в идеале за один такт работы процессора получается 4 операции с целыми числами!
 
Сопроцессор
Что касается блока для операций с числами с плавающей запятой у Pentium 4, то получившаяся картина, похоже, не устраивает даже саму Intel. Два таких модуля в операциях с плавающей запятой будут обеспечивать для 1.4 ГГц-процессора Pentium 4 пиковую производительность всего лишь 1.4 GFLOPS :-(. Реальную вычислительную работу выполняет только один модуль - операции типа FADD (сложения) и FMUL (умножения), второй же занимается подсобной деятельностью - операции типа FSTORE (обмен между регистрами и памятью). Не в пример Pentium 4, FPU процессора Athlon содержит три раздельных, полностью конвейеризированных модуля, способных принимать инструкции на каждом такте. При этом один из них предназначен только для инструкции FSTORE, остальные два состоят из устройств FADD и FMUL. Благодаря этому FPU может выполнять за каждый такт по две инструкции - одну сложения и другую умножения, т. е. 1 ГГц Athlon имеет пиковую производительность 2 GFLOPS. Получается, что у Athlon более совершенная архитектура сопроцессора, чем у Pentium 4.
SSE-2
Поскольку производительность нового процессора очень сильно зависит от скорости поступления команд в исполнительные блоки конвейера, "напрашивается" еще один способ ускорения его работы -- сократить количество команд, необходимых для выполнения ключевых операций. Однако в рамках существующего x86-набора это сделать попросту невозможно: если хоть что-то в нем изменить, CPU потеряет совместимость со старыми программами. Ведь то, что даже на самом современном процессоре до сих пор может исполняться код, написанный для родоначальника всего семейства -- Intel 8086, является особым предметом гордости Intel. Но если нельзя изменить, никто не запрещает дополнить. Так и сделали -- Pentium 4 поддерживает расширенный набор SIMD-команд под кодовым наименованием SSE-2. Во-первых, давайте разберемся с самим термином. SIMD (Single Instruction -- Multiple Data) -- это специальный тип инструкций, когда в качестве аргумента одной команды выступает достаточно большой массив данных. SSE-2 (Streaming SIMD Extensions 2, Потоковые SIMD Расширения 2) -- значительно расширенная версия набора SSE, знакомого нам по Pentium III Coppermine. Набор SSE-2 включает в себя 144 новые инструкции, специально ориентированные на обработку больших входящих потоков данных. Использование SSE-2, по заявлениям Intel, способно поднять на невиданные доселе высоты производительность в мультимедиа-приложениях и играх -- кодирование/декодирование аудио- и видеоданных, распознавание речи, трехмерные компьютерные игры -- вот область применения новых команд. Основной упор делается на то, что теперь многие операции, ранее требовавшие написания целого фрагмента программы, могут быть осуществлены с помощью одной-двух инструкций SSE-2.
Платформа для Pentium 4
Естественно, процессор с таким количеством архитектурных новшеств требовал и принципиально новой платформы. Ее роль на данный момент выполняет новый чипсет Intel i850. Основным моментом, который хотелось бы отметить, является организация работы с памятью в рамках всей связки Pentium 4 <--> i850. Высокоскоростная 400-мегагерцевая RDRAM связана с чипсетом через двухканальную шину, разрядность каждого канала -- 32 бита. Таким образом, в сумме имеем 64 бита и частоту 400 MHz, т. е. пропускную способность порядка 3,2 GBps. Дальше -- больше: полоса пропускания шины FSB, по которой процессор "общается" с чипсетом, также эквивалентна 400 MHz! А учитывая, что сам процессор -- 64-битовый, мы видим, что фактически шина, соединяющая процессор и чипсет, имеет такую же пропускную способность, как шина, соединяющая чипсет с памятью! И опять-таки хочется заметить, что при всей революционности подходов выглядит новая архитектура Intel весьма стройно -- в ней действительно все строго ориентировано на основные приоритеты Pentium 4: потоковое видео и аудио, Internet, мультимедиа, игры.


Системная шина
При все возрастающей производительности процессоров и подсистемы памяти, увеличение скорости уже достаточно пожилой системной шины GTL+ за последний год всего лишь на 33 МГц выглядит не слишком впечатляюще. Поэтому неудивительно, что с выходом Willamette Intel вводит новую системную шину, которая должна значительно повысить пропускную способность. Эта системная шина имеет 128-битные линии с 64-битным доступом, к примеру, у процессоров предыдущих поколений были 32-битные линии. А ее тактовая частота - всего 100 МГц, то есть даже ниже, чем у сегодняшней 133 МГц GTL+, но за счет передачи 4 пакетов за такт, эффективная частота возрастает до 400 МГц.
Таким образом плюсы новой шины очевидны: значительно выросшая пропускная способность - 3.2 Гб/с (400 МГц, 64 бит) против 1.064 Гб/с у сегодняшней GTL+ (133 МГц, 32 бит) и против 1.6 Гб/с у системной шины EV6 под Athlon (200 МГц, 64-бит).
А вот минусы получились замаскированными. 4 пакета данных за один такт - это, конечно, здорово, но только в том случае, когда удастся их предоставить к моменту выполнения очередного такта. Иначе пропускная способность шины будет использоваться далеко не полностью. В общем, 3.2 Гб/с - это максимум, на что мы можем рассчитывать. К тому же, использование новой шины требует применения нового чипсета, что также плюсом назвать достаточно трудно.
Кэш первого и второго уровня
В кэш-памяти первого уровня сохраняются декодированные команды - ~12 Кб микрокоманд, благодаря чему в цикле исполнения устраняются задержки, связанные с раскодированием. Такая технология должна повысить быстродействие кэш-памяти команд и увеличить эффективность использования кэша. Кроме того, процессор Pentium 4 содержит кэш-память второго уровня типа Advanced Transfer Cache объемом 256 Кб, обеспечивающую передачу данных со скоростью 48 Гбит/с, увеличивающуюся пропорционально тактовой частоте ядра. В целом очень неплохо, но ничего революционного.
Относительно L2-кэша, видимо, разработчики посчитали, что "лучшее -- враг хорошего", поэтому он остался таким же, как у Pentium III Coppermine: "учетверенной" ширины 256-битовая шина и работа на частоте ядра. А вот объем L1-кэша уменьшился вдвое и составляет по 8 КВ на команды и данные. Несколько странное решение, однако, возможно, дело просто в том, что процессор "не резиновый", и учитывая количество всех остальных модулей, больший размер L1 просто не удалось интегрировать в ядро. К тому же не стоит забывать, что Pentium 4 обладает существенно увеличенными в объеме "скрытыми кэшами" -- фактически и 4-килобайтовый Branch Target Buffer, и Instruction Window по принципу своей работы вполне подходят под это определение.
Кэш второго уровня - быстродействующая память, которая используется процессором для хранения часто используемых данных. Благодаря высокой скорости работы, данные из кэша второго уровня загружаются гораздо быстрее, чем из основной памяти. В процессорах Pentium III Coppermine, AMD Ahtlon, Thunderbird и Duron кэш второго уровня находится непосредственно на ядре процессора и работает на его полной частоте.
 
Выводы
Intel Pentium 4 -- процессор во всех отношениях новаторский. Фактически впервые в x86-семействе появился CPU, изначально спроектированный в расчете на быстродействие в определенных классах задач, но в то же самое время являющийся универсальным по набору команд. К тому же, говоря о самом процессоре, не стоит забывать и об архитектуре всей остальной системы. В нашем случае она действительно почти идеально сбалансирована, причем опять-таки -- именно для строго определенных целей. Естественно (не будем закрывать глаза на очевидные вещи), кое-чем пришлось пожертвовать, и этими жертвами оказались "неудобные" новому CPU программы и алгоритмы работы. Логику Intel примерно можно представить так: "пусть в некоторых задачах наш процессор окажется на 10--15% медленнее, зато в остальных он получит возможность быть в 1,5--2 раза быстрее!". Такая ситуация и сложилась, судя по результатам наших тестов.
Следовательно, успех нового CPU во многом зависит от поддержки со стороны производителей ПО и распространенности программ именно того типа, на которые он ориентирован. Ну, в последнем пункте можно не сомневаться -- игры и домашняя мультимедиа даже в нашей стране завоевывают все большую популярность, не говоря уже о Западе. А вот касательно учета особенностей Pentium 4 при разработке программ -- здесь, несомненно, должны оказать немалое влияние "громкое" имя Intel и ее репутация, а также хорошая раскрученность марки "Pentium" во всем мире.
Отрадно и то, что переход на программы и процессор "нового века" Intel не намеревается осуществлять прямо завтра и на все 100%. Как следует из официальных заявлений самой компании, производство Pentium 4 только в 2002 г. сравняется с объемами выпуска Pentium III, так что и пользователи, и разработчики программного обеспечения будут располагать достаточным количеством времени для того, чтобы присмотреться к новому процессору. Наверняка не последнюю роль в принятии именно такой схемы сыграл и фактор стоимости памяти для новых систем -- все же RDRAM сейчас намного дороже привычной PC133 SDRAM. Однако Intel надеется, что к тому времени, когда Pentium 4 распространится широко, ситуация успеет измениться в лучшую сторону.
Intel уже демонстрировала опытные образцы Pentium 4. А некоторым независимым источникам (зарубежные компьютерные СМИ) даже удалось попробовать новинку в работе. И если отбросить результаты явно рекламных тестов, активно использующих SSE2, то выводы получатся достаточно обычными - революции не произошло :-(. Несмотря на внедрение всех вышеперечисленных инноваций, результаты первых полевых испытаний не выявили явного преимущества Pentium 4 перед Pentium III Coppermine или AMD Athlon - при равных тактовых частотах.
Но вряд ли стоит огорчаться по этому поводу. Теперь в арсенале Intel имеется отлично масштабируемая архитектура, позволяющая быстро и легко наращивать тактовую частоту процессора, сохраняя при этом хороший прирост производительности системы в целом. Теперь главному конкуренту в лице AMD Athlon будет очень тяжело тягаться с Pentium 4 по уровню достигаемых тактовых частот. В бешеной гонке полупроводниковых гигантов за звание производителя самого быстрого процессора компания Intel сделала огромный рывок вперед, оставив позади соперников - AMD и VIA. Вот только надолго ли?
Pentium 4 представляет собой полностью новую архитектуру, кодовое название которой NetBurst.  Он создан для решения таких задач, как шифрование данных, сжатия видео-информации или Napster-сетей, т.е. для технологий, популярность которых растет одновременно с Интернет , - сказал Альберт Ю (Albert Yu), главный вице-президент Intel Architecture Group. -  Это будет высокопроизводительный процессор для платформы PC. Мы также работаем над новыми возможностями в области потокового видео.Новые подсистемы архитектуры NetBurst позволят процессору обрабатывать данные намного быстрее . Микро-движок быстрого выполнения, названный  Rapid Execution Engine , например, будет работать с удвоенной скоростью процессора и будет отвечать за часто повторяемые задачи, такие как сложение или вычитание.

Список литературы

 
1.       InfoCity - виртуальный город компьютерной документации  (Статья Pentium 4: революция не бывает половинчатой!) www.InfoCity.kiev.ua/mhard.
Предыдущая страница 1 2 3


Pentium IV

Скачать реферат бесплатно


Постоянный url этой страницы:
http://referatnatemu.com/?id=71&часть=3



вверх страницы

Рейтинг@Mail.ru
Copyright © 2010-2015 referatnatemu.com