§ 1. Моделирование паркета из шестиугольников Из

.zip" v:shapes="_x0000_i1025">
- угольников одного типа, где
, можно построить паркет при некоторых условиях на стороны и углы. Если окрестность точки замостить тремя многоугольниками без повторения его углов в этой вершине, то сумма углов должна быть равна полному углу, т.е.
. При совмещении многоугольников сторонами получаем условие о равенстве некоторых сторон.
К. Рейнхардт (1918 г.), Р.Б. Кершнер (1968 г.), М. Гарднер (1975 г.), Р. Джеймс (1975 г.), Марджори Райс (1976 г.) [2, c. 183], получили ряд условий на пятиугольники и шестиугольники, из которых можно построить геометрический паркет.
В первом разделе впервые выполнено моделирование и составлены алгоритмы построения
геометрических паркетов из неправильных шестиугольников одного типа. Изменяя параметры, можно получить различные паркеты.
Задача. Написать математическую модель для составления программы изображения паркета на экране компьютера, используя шестиугольник, изображенный на рис.1 .
Как было замечено выше, из
- угольников одного типа, где
, можно построить паркет при некоторых условиях на стороны и углы. Для рассматриваемого шестиугольника определим следующие условия:
Легко проверить, что
, поэтому этими углами можно замостить окрестность точки.
Для составления программы изображения паркета из данного шестиугольника на экране компьютера, достаточно рассмотреть два шестиугольникa:
ABCDEO и
A’B’C’D’E’O’ (рис.2). Шестиугольник
A’B’C’D’E’O’ получается из шестиугольника
ABCDEO с помощью центральной симметрии относительно середины отрезка
ОЕ.
Рассмотрим математическую модель для составления программы изображения паркета на экране компьютера.
Определимся с количеством параметров. Чтобы задать
- угольник на плоскости, достаточно задать его вершины в прямоугольной декартовой системе координат, т.е. указать
координат.
Таким образом, для задания шестиугольника необходимо 12 параметров.
Введем координатную плоскость таким образом, чтобы начало координат совпадало с точкой
О, а сторону
ОА совместим с осью
, тогда координаты точки
О и ордината точки
А известны и, следовательно, количество необходимых параметров становится равным
, т.е. остается 9 параметров. С учетом параллельности и равенства сторон
ОА и
DC, необходимыми остаются 7 параметров. Это (рис. 3):
1) длины сторон:
a=OA, b=AB, d=OD=CA, f=OE, 
2) углы:

.
SHAPE \* MERGEFORMAT
Тогда координаты вершин шестиугольникa
ABCDEO :
;
;
;
;
;
.
Координаты вершин шестиугольникa
:
;
;
;

;
;
.
Все необходимые координаты определены, и паркет из рассматриваемого шестиугольника можно построить на экране компьютера.
На вводимые параметры наложим естественные условия:
Но при построении шестиугольника с этими условиями могут возникнуть следующие конфигурации, приводящие к невыпуклым шестиугольникам:
а) После последовательного построения отрезков
OA,
OE,
ED и
DC точки
D и
С окажутся расположенными по разные стороны от прямой
OE, то есть возникнет один из случаев изображенных на рис. 4 или на рис. 5:
Но в выпуклом шестиугольнике точки
D и
С должны располагаться по одну сторону относительно прямой
OE. Таким образом, на вводимые параметры необходимо наложить дополнительное условие:
б) При построении шестиугольника точки
Е и
О могут оказаться расположенными по разные стороны от прямой
DC, но в выпуклом шестиугольнике точки
Е и
О должны располагаться по одну сторону относительно прямой
DС иначе возникнет следующий случай невыпуклого шестиугольника:
Данный случай возникнет, если
ЕН1>DН2 .
Следовательно, на вводимые параметры необходимо наложить еще одно условие:
Рассуждая аналогичным образом для точек
В и
О, получаем еще одно дополнительное условие:
Итак, если после введения параметров одно из условий (1), (2), (3) или (4) не выполняется, то программа должна предусмотреть возврат на уточнение параметров, чтобы избежать конфигураций, рассмотренных в случаях а) и б).
Программа построения и примеры паркета из рассмотренного шестиугольника представлены в приложении 1 и в приложении 2 соответственно.
§ 2. Моделирование паркета из пятиугольников
Задача. Написать математическую модель для составления программы изображения паркета на экране компьютера, используя шестиугольник, изображенный на рис. 1.
Для пятиугольника, изображенного на рис. 1, выполняются следующие условия:
1)
, (1)
2)
, (2)
3)
. (3)
В классификации М. Гарднера [3, c.184], [1 , c. 196] и Марджори Райс [3, c.189] этому пятиугольнику присвоен тип № 2.
Условия (2) и (3) не являются независимыми. Вычисляя сумму углов пятиугольника по формуле
, получаем 540
0, поэтому достаточно потребовать выполнение одного из условий (2), (3), тогда второе выполняется автоматически. Итак, уменьшая число параметров
для пятиугольника на 2 на основании равенств (1), (3), получаем пять параметров для задания пятиугольника. Это (рис. 2.)
1) длины сторон:
a=AE, b=ED, c=CB, 2) углы:
.
Для декартовой системы координат, изображенной на рисунке 2, получаем координаты вершин и векторов:
.
Для задания вектора
введем вспомогательный угол
, образованный этим вектором с положительным направлением оси
Ох Для углов в точке
D с учетом их ориентации имеем
или
Для задания вектора
введем вспомогательный угол
, образованный этим вектором с положительным направлением оси
.
Для углов в точке
С имеем
,
.
,
На вводимые параметры наложим естественные условия:
(4)
Но при построении пятиугольника с этими условиями могут возникнуть следующие конфигурации, приводящие к невыпуклым пятиугольникам:
а) После последовательного построения отрезков
ЕА, ED, DC для пятиугольника точки
Е и
С оказались расположенными по одну стороны относительно прямой
AD (рис. 2, рис. 3), но в выпуклом многоугольнике точки
Е и
С должны располагаться по разные стороны относительно диагонали
AD.