ОБЩЕОБРАЗОВАТЕЛЬНАЯ ЛЕКЦИЯ
НА ТЕМУ: «БИОЭНЕРГЕТИКА СЕРДЦА» РАПОВЕЦ В.А., врач-кардиолог
СОДЕРЖАНИЕ
Общие положения
Вступление
Аэробное окисление глюкозы и ЖК Митохондрии Транспорт Е Заключение Общие положения
Современная кардиология немыслима без изучения процессов на молекулярном и субмолекулярном уровнях. Только благодаря современным тонким методам исследования стали возможны открытия в области такой науки, как биоэнергетика сердца.
Одна из функций, присущих всему живому, - способность к энергообеспечению за счет от
тех или иных внешних энергетических ресурсов. Это и изучает биоэнергетика. Само слово вошло
в обиход с легкой руки А. Сцепт – Дьерди, прославившегося в свое время выделением первого витамина – аскорбиновой кислоты. Так называлась небольшая книжка, опубликованная А. Сцепт –
Дьерди в 1956 г. В этом труде было множество увлекательных мыслей и гипотез, но испытание
временем выдержало лишь слово, вынесенное автором на обложку.
Сначала в некоторых биологических центрах появились лаборатории, отделы биоэнергетики (отдел МГУ был создан в 1965 г.). Затем с конца 60-х годов стали издаваться журналы и сборники, пошли симпозиумы, конференции, курсы под этим названием. И вот сегодня биоэнергетика
– одно из популярных научных направлений со своим кругом идей, объектов и методов, своими
лидерами и соперничающими школами; словом, - интернациональный организм, живущий и развивающийся по собственным законам.
Вслед за известными успехами этой ветви биологии пришла мода и появилась тенденция
писать слово «биоэнергетика» во всех случаях, где идет речь об энергетическом аспекте живых
существ, невзирая на степень их сложности. В этом смысле первым биоэнергетиком нужно признать Платона, размышлявшего о судьбе пищи в организме. Что же до современных исследователей, пытающихся добыть точные сведения о биологических преобразователях
Е, то их правильнее
называть «молекулярными биоэнергетиками».
Сейчас непосредственно о биоэнергетике сердца.
Вступление
Энергетический метаболизм клеток сердца включает в себя 3 раздела:
1–й раздел: процессы аэробного окисления глюкозы и ЖК, которые приводят к образованию
АТФ в митохондриях;
2–й раздел: процесс внутриклеточного транспорта Е;
3–й раздел: реакции использования Е: а) для сокращения миофибрилл;
б) перенос ионов против градиента их концентрации через клеточные мембраны;
Примечание.
Эти два процесса взаимосвязаны и их рассмотрим вместе Сейчас перейдем к первому большому разделу: образованию энергии.
1–й раздел: процессы аэробного окисления глюкозы и ЖК Источником биологической Е для организма служит пища, в которой эта Е заключена в
химических связях сложных соединений, главным образом, - в связях
С-С и
С-Н.
Биохимические процессы, производящие Е, можно подразделить на 2 группы:
1-я группа: процессы, идущие с поглощением
О2 воздуха;
2-я группа: без доступа
кислорода
. Биологический синтез любой химической связи требует в 3 раза больше Е, чем может образоваться при простом расщеплении подобной связи. Поэтому организм прибегает к обходному пути, чем достигает больший кпд.
Аэробный путь был открыт в 30-х годах Энгельгардтом и назван окислительным фосфорилированием, потому что на промежуточных этапах окисления освобождающаяся
Е фиксируется в
пирофосфатных связях молекул АТФ и других соединений. Эти связи Энгельгардт назвал макроэргическими – т.е., высокоэнергетическими. АТФ и ее аналоги играют роль универсального аккумулятора
Е в организме. В этом соединении
Е концентрируется в удобной форме, пригодной для
утилизации. Процессы, идущие с выделением
Е, связаны с
синтезом АТФ. Процессы с поглощением
Е сопряжены с
расщеплением АТФ. Таким образом, АТФ
выступает связующим звеном
между ними. Благодаря АТФ, 2 процесса расчленяются во времени. Это придает
Е-обмену большую гибкость.
Е – законсервирована и может расходоваться в любое время и на любые нужды.
АТФ не только посредник, но и депо
Е. Во время работы количество АТФ уменьшается,
идут реакции гликолитического фосфорилирования: увеличиваются АДФ, АМф, фосфат неорганический. После нагрузки уровень АТФ восстанавливается.
Роль запаса
Е и донора фосфатов для АТФ играет также другой макроэрг – КФ. КФ не поставляет
Е для клетки, а обменивает свой фосфат с АТФ. Реакция протекает по уравнению:
Креатин + АТФ кфк КФ + АДФ При энергообразовании реакция идет вправо, идет запас КФ. При потреблении
Е – влево – увеличение АТФ. Все субклеточные структуры сердца, которые потребляют
Е (миофибриллы,
мембраны), - содержат КФК (ММ - изофермент), сопряженную с АТФ –азными реакцими.
Аэробный путь энергетически более выгодный. Первые его этапы совпадают с гликолизом
– до стадии образования ПВК. Но в присутствии
О2 ПВК не превращается в МК, а вступает в цикл
трикарбоновых кислот Кребса. В цикле Кребса при окислении пирувата образуется 1 макроэргическая связь, сохраняемая в молекуле ГТФ, который передает ее на АТФ. Такое фосфорилирование
называется субстратным.
Вся остальная
Е, содержащаяся в субстратах цикла Кребса передается без потерь на ферменты НАД и НАДФ, и фиксируется в их эфирных связях.
Дальнейшее окисление этих коферментов через флавиновые ферменты и цитрохромную систему называется
терминальным. Это самый выгодный участок дыхательной цепи, так как
здесь идет больше всего реакций окислительного фосфорилирования. Здесь образуется 3 молекулярных АТФ. Таким образом,
Е субстратов цикла Кребса переходит в Е АТФ.
Почти все остальные субстраты имеют неуглеводную природу:- аминокислоты, ЖК, -подвергаясь ферментативным превращениям, образуют либо метаболиты цикла Кребса, или А –
Ко – А (активированная форма уксусной кислоты).
В итоге – превращение
Е идет или с окислением ПВК или АКоА. 1 молекула ПВК дает 15
макроэргических связей.
Сейчас рассмотрим, как работают митохондрии.
Митохондрии Функцию выработки и сохранения
Е в клетке несут митохондрии. Грин назвал митохондрии биохимическими машинами, которые трансформируют и консервируют Е. Они составляют 25
– 30% всей массы миокарда. Форма их зависит от вида клеток. Митохондрии сердца имеют цилиндрическую форму, расположены между миофибриллами и в непосредственной близости к ним,
так как тесный контакт облегчает обмен АТФ.
Это твердые тельца, окруженные гидрофильным золем и заключены в оболочку с избирательной проницаемостью. Мембраны – две. Внешняя – гладкая. Внутренняя образует выпячивания. Палад назвал их кристами. От наружной мембраны внутрь, к центру отходят гребни. Они разделяют митохондрии на камеры, заполненные матриксом. В митохондриях клеток миокарда, где
интенсивно идет Е- обмен, число крист – наибольшее. Количество матрикса отражает побочные
функции митохондрий. В миокарде его мало. Наружная мембрана и гребни состоят из ЛП и ФЛ.
Киндэй и Шнейдер в 1948 г. нашли в митохондриях полный набор ферментов для цикла
Кребса. Грин, Рихтерих в 50-х годах обнаружили ферменты для окисления
Б, Ж, У до субстратов
цикла Кребса. Наконец, Чейнс, Вильямс показали, что ферменты терминального окисления (цитохромы, НАД) находятся только в митохондриях. Ферменты находятся в строгом порядке, одни – растворены, другие – прочно связаны со структурным белком.
Побочная функция митохондрий – синтез своих структурных белков и некоторых ферментов. Цитохромы, дегидрогеназы поступают от рибосом, извне.
Митохондрии в работе клетки – самое слабое звено. Они очень чувствительны на любое
воздействие, особенно, на кислородную недостаточность. Первичной реакцией является торможение окислительного фосфорилирования, называемое
мягким разобщением. Это включение свободного окисления.
В 60-х годах Митчел создал хемиоосмотическую теорию, по которой окислительное фосфорилирование есть перенос е*, р*, Н* во вне через мембрану, способную создавать и удерживать
таким образом мембранный потенциал. Этот потенциал и регулирует распределение ионов, в том
числе, и возможность обратного входа Н* для синтеза АТФ. Сильные нарушения движения ионов
вызывает изменение РН. При свободном же окислении потенциала нет, и весь поток
Е идет по короткому пути, в обход фосфорилирующих реакций, без синтеза АТФ.
е* быстро переносится с восстановителя на окислитель.
Скулачев в 1962 г. показал, что свободное окисление – вынужденная мера, энергетически
она не выгодна.
При заболеваниях сердца митохондрии страдают сильнее. Переключение реакций на свободное окисление уменьшает
Е – снабжение. В далеко зашедших случаях подавляется и свободное
окисление. Визуально наблюдается набухание митохондрий, что приводит к нарушению высокой
организации внутренней структуры. Нарушается расположение ферментов и проницаемость мембраны. Возникает порочный круг, так как для восстановления структуры необходим приток
Е.
АТФ выходит из митохондрий и не может быть использована миофибриллами. Наступает необратимое разрушение мембраны и гребней. При гипертрофии сердца митохондрии вначале набухают,
затем уменьшаются в размерах. Кристы исчезают. Появляются жировые включения.
Функция митохондрий зависит от РН клетки. В кислой среде, когда РН ниже 6,6, - фосфорилирование тормозится, мембраны набухают. Это обратимо. В более кислой среде митохондрии
сморщиваются. В щелочной среде митохондрии набухают.
При воздействии КА митохондрии сокращают свои размеры, и буквально, забиты кристами. Таким образом, любое патологическое состояние ведущее к нарушению обмена веществ (гипоксия, ацидоз, алкалоз, гиперметаболизм) – ведет к обратимому, либо к необратимому повреждению митохондрий.
Главными источниками Е для миокарда являются: глюкоза, лактаты и свободные ЖК. В
незначительной степени участвуют кетотела (< 10%).
Как же меняется
Е-обмен при различных экстремальных условиях? Нормально функционирующее сердце использует для энергетических целей различные субстраты, в выборе которых
сердце весьма лабильно.
В условиях покоя важнейшим источником
Е является глюкоза крови, (до 30 %).Утилизация
глюкозы миокардом, в основном, определяется не ее концентрацией, а содержанием инсулина.
При мышечной работе потребление глюкозы уменьшается – до 10%. Организм экономит глюкозу
для мозга и других органов. А при повышении концентрации глюкозы в крови утилизация ее миокардом возрастает. Окисление жира при этом снижается.
20-30% Е обеспечивают лактаты. Миокард свободно утилизирует из крови МК и ПВК. При
мышечной работе лактаты все больше окисляются в миокарде, и дают 70% всей
Е. Лишь при
пульсе 190-200 ударов в минуту в сердце начинает преобладать анаэробный метаболизм, с выделением МК.
Сердце окисляет также СЖК, которые при голодании и натощак становятся основным источником.
Е.
В последнее время подчеркивается роль в обмене миокарда ТГ и ЖК. В покое доля СЖК – 40%, ТГ – 15%. Во время работы доля жиров уменьшается в 2 раза.
Такую лабильность следует рассматривать как проявление адаптации миокарда к различным условиям функционирования.
Транспорт Е
В сердечных клетках
Е переносится от митохондрий КФ ко всем местам использования:
миофибриллам и клеточным мембранам, субклеточным мембранам. КФ-пути внутриклеточного
транспорта Е в сердечных клетках приведены на схеме.
Схема КФ-пути внутриклеточноготранспорта Е в сердечных клетках
1-2 Главным макроэргом, выходящим из митохондрий, является КФ. В митохондриях работает замкнутый цикл превращения АТФ и АДФ, связанный через КФК - митохондрий.
3А Сила сокращения миофибриллы и длительность ПД коррелирует не с концентрацией
АТФ, а с КФ, который, в свою очередь, от креатинина. Таким образом, на силу сокращения влияет
не только поток
Са++, но и концентрация КФ. КФ через КФК миофибриллы рефосфорилирует
АДФ для акта сокращения.
3В Локализация КФК на мембране клеточного ядра позволяет считать, что
Е - КФ используется в биосинтетических процессах ядра.
Обеспечивая эффективный транспорт
Е, КФК - реакции выполняют также регуляторную
функцию, участвуя в системе обратной связи между процессами образования и использования
Е.
Точное выяснение природы обратной связи требует дальнейшего изучения.
3–й раздел: Реакции использования Е Для того, чтобы понять, как происходит сокращение мышцы сердца, необходимо знать
строение кардиального миоцита.
Клетка на поперечном срезе содержит : ядро, миофибриллы, митохондрии, Т-система, СПР.
Основную массу клетки занимают миофибриллы. Их число доходит до
400-700 тысяч. Миофибриллы представляют длинные нити, которые переходят из саркомера в
саркомер. Они состоят из 2 типов нитей. Толстые, нити миозина, находятся по середине соркомера. Ось миозина образует легкая субъединица – L-меромиозин. H- меромиозин – главная, тяжелая
субъединица, снабжена головками, на расстоянии
400 А°, которые образуют мостики с актином.
Нити актина – тонкие, расположены между толстыми, в области Z – линии каждая соединена с 3-4 – мя соседнего саркомера.
F- актин за счет
Е – АТФ может переходить в G – А, глобулярный А. К актину прикреплен
тропомиозин, который не фиксирован и может перемещаться. Он блокирует главные центры актина. Тропомиозин несет на себе тропонин.
Тропонин имеет 3 субъединицы:
- TN – C – связывающая
Са++;
- TN – I – ингибитор актина;
- TN – T – привязывает тропонин к тропомиозину.
Таким образом, тропонин – тропомиозин - в комплексе блокирует актин.
Сейчас о роли
Са++ в сокращении. Главное депо
Са++ – это T – система, СПР и митохондрии. T– система образуется выпячиваниями сарколеммы в области Z – линии внутрь клетки.
СПР состоит из сети продольных трубочек и латеральных цистерн, где и концентрируется
Са++ для очередного залпа. В цистернах содержится мукополисахарид, который быстро связывает
Са++. Таким образом, свободный
Са++, попав в продольную сеть, движется к цистернам, где его
концентрация меньше, а связанного – больше, это – транслокация
Са++. Запас
Са++ создается
только на 1 залп. Цистерны близко прилегают к T – системе.
Во время плато ПД увеличивается проницаемость мембраны для
Са++, и он входит в клетку через
Cа – каналы.
Это медленный
Са++ ток. Дальше часть
Са используется в миофибриллах для сокращения,
равного 40 % всего
Са. Вторая часть поступает в СПР, про запас. Когда деполяризация
достигает T – системы, срабатывает
Na – триггер, и СПР выбрасывает весь запас
Са из цистерн.
Это 60 % всего
Са. В соркоплазме концентрация
Са увеличивается в 100 раз, с 10
-8 до 10
-5 М.
Для расслабления необходимо уменьшить его концентрацию в миофибриллах.
1-й механизм: Обмен Na – Cа. Cа удаляется из клетки против концентрационного градиента за счет
Е движения
Na внутрь клетки, по концентрационному градиенту. Это
Na –
Cа –
насос.
2-й механизм: Кальциевый насос продольных трубочек СПР быстро поглощает
Са++ из миоплазмы. Сам
Cа активирует свое поглощение, стимулируя АТФ – азу мембраны СПР. АТФ дает
Е для транспорта
Са++ против градиента концентрации.
Эти процессы начинаются еще во время систолы и препятствуют сильному напряжению.
Время транслокации
Са++ в
цистерны и определяет восстановление сердечной мышцы. Благодаря
ему не происходит титанических сокращений.
Концентрация
Са++ вблизи миофибрилл уменьшается,
Cа покидает тропонин – тропо –
миозиновые комплексы, так как СПР поглощает его в 3 раза более активнее, наступает расслабление.
Таким образом, во время ПД медленный ток
Cа в клетку предопределяет и сокращение, и
включение механизма расслабления.
Быстрый ток
Na в клетку вызывает выход
Са++ из СПР – триггер и дает
Е для
удаления
Cа из клетки.
3-й насос –
K- Na, за счет
Е АТФ, удаляет
Na, и возвращает
K. Наступает реполяризация
мембраны, и клетка переходит в исходное состояние.
Таким образом, необходимо говорить о едином механизме сопряжения возбуждения с сокращением и расслаблением.
Собственно мышечное сокращение происходит следующим образом. Когда
Са++ присоединяется к тропонину – С (TNC), в нем происходят конформационные изменения, в результате чего тропонин - тропомиозин – комплекс сдвигается и обнажает центры актина. Головки H-меромиозина образуют мостики с нитью актина. Используются
Е – АТФ
, ионы
Са++, Mg++.
Свойства фермента – АТФ – азы проявляет сам H-меромиозин.
Мостики образуются и вновь разрушаются. Таким образом, нити актина скользят между миозином к центру соркомера, каждый раз на 1 шаг -
400 А°.
Мышца укорачивается, происходит систолическое сокращение. В результате химическая
Е
связей
АТФ переходит в механическую работу.
Тропонин - тропомиозин – комплекс (с TN–I) блокирует актин.
Ионы
Са++ проходят через поры мембраны, и из СПР,
Cа взаимодействует с TN – C, тропонин –
тропомиозин поворачиваются, актин взаимодействует с миозином.
Cа уходит из клетки или в СПР.
Заключение Таким образом, согласованное во времени протекание всех 3-х реакций – образования,
транспорта и использования
Е – обеспечивается эффективными механизмами их взаимной регуляции. Главный фактор, влияющий на
Е – метаболизм - сам акт сокращения
, регулируемый потоком
Са++ во время плато ПД. Особенность сердца состоит в том, что значительное увеличение
работы и потребления
О2 мало изменяют концентрацию макроэргов в клетке (АТФ и КФ). В сердце велик метаболический оборот этих соединений, эффективная обратная связь:
Синтез Е Расход Е Мы рассмотрели главные пути обмена
Е в миокарде. Пока еще не все ясно. Многие вопросы еще требу ют изучения.